首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For some polymers, the rate of solid‐state polymerization (SSP) is higher with supercritical carbon dioxide (scCO2) as the sweep gas than with atmospheric N2. One explanation for this higher rate is that the diffusion coefficient of the condensate molecule is higher in the CO2‐swollen polymer. To investigate this hypothesis, we measured the diffusion coefficient of phenol in poly(bisphenol A carbonate) (BPA‐PC) by carrying out SSP of this polymer under diffusion‐limited conditions. Under these conditions, the diffusion coefficient of the condensate molecule could be calculated from the profile of the molecular weight versus time. The phenol diffusivity was determined between 135 and 180 °C in the presence of N2 at about 1 bar and in the presence of scCO2 at about 138, 207, and 345 bar. The diffusion coefficient of phenol was up to 200% higher in scCO2 than in N2, depending on the temperature and CO2 pressure. With both N2 and scCO2, the activation energy for phenol diffusion in BPA‐PC was larger than the activation energy for the reaction between hydroxyl and phenyl end groups that occurred during SSP of BPA‐PC. As a result, the overall SSP reaction shifted from diffusion control at low temperatures toward chemical‐reaction control at high temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1143–1156, 2003  相似文献   

2.
Low‐orientation and amorphous poly(ethylene terephthalate) fibers were drawn continuously with heating by carbon dioxide (CO2) laser radiation. The tensile properties were examined in terms of the birefringence and network draw ratio, which was estimated from the strain shift of true stress–strain curves. Two drawing forms, neck drawing with a draw efficiency (the ratio of the network draw ratio to the actual draw ratio) of about unity and flow drawing with a draw efficiency of about zero, were found to be stable in the continuous drawing process. Meanwhile, any draw‐efficiency value between zero and unity could be obtained in the batch‐drawing process. The object whose orientation was estimated by the network draw ratio differed from that estimated by birefringence. Two linear relationships were found, between the network draw ratio and tensile strength and between the birefringence and initial modulus. The true stress at breaking increased with the network draw ratio of the CO2‐laser‐heated drawn fibers, and when the draw ratio exceeded 5.0, it became higher than that for batch‐drawn fibers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2322–2331, 2003  相似文献   

3.
The effect of stretching on the thermal behavior of acrylic fibers was investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and Fourier transform infrared spectroscopy (FTIR). In air atmosphere, the peak temperature of the dynamic DSC thermogram was significantly lowered from 289 to 273 °C when the gel fibers (undrawn) were drawn to a draw ratio of 11.2. However, the initiation temperature was unchanged at 202 °C. The shoulder in the region of 310–380 °C was gradually converted to a sharp peak during the drawing process. However, the dynamic DSC in nitrogen atmosphere did not change in all cases. In air atmosphere the total heat liberated, ΔH, for gel fiber was 851 J g?1. However, upon drawing to 11.2, ΔH increased to 1580 J g?1 showing an increase in the total chemical changes. An intimate relationship of chemical changes during the heating process was observed with FTIR of heated samples at various temperatures. The initiation of a DSC exotherm in air begins with nitrile cyclization, and subsequently dehydrogenation was initiated between 220 and 260 °C. An increase in the X‐ray orientation factor and sonic modulus gave a correlation between the stretching draw ratio and crystalline/overall molecular orientation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2949–2958, 2003  相似文献   

4.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

5.
Drawing behavior, flow drawing, and neck drawing, was studied for isotacticpolypropylene fibers in CO2 laser drawing system, and the fiber structure and the mechanical properties of drawn fibers were analyzed. For a certain laser power, flow drawing of polypropylene (PP) was possible up to draw ratio (DR) 19.5. Though the drawing stress was very low, the flow‐drawn PP fiber exhibited oriented crystal structure and improved mechanical properties. On the other hand, neck‐drawing was accomplished from DR 4 to 12, with significant increase in drawing stress that enhanced the development of fiber structure and mechanical properties. Unlike PET, the drawing stress depends not only on the DR, but on irradiated laser power also. The 10–12 times neck‐drawn fibers were highly fibrillated. The fibers having tensile strength 910 MPa, initial modulus 11 GPa, and dynamic modulus 14 GPa were obtained by single‐step laser drawing system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 398–408, 2006  相似文献   

6.
A polyethylene‐block‐polystyrene copolymer film having a bicontinuous crystalline/amorphous phases was tensile‐drawn under various conditions for the structural arrangement of these phases. The prepared film could be drawn below the melting temperature of the polyethylene component, with the highest drawability obtained at 60°C. However, the initial bicontinuous structure was gradually destroyed with increasing strain because the drawing temperature was lower than the glass‐transition temperature of the polystyrene component. Correspondingly, a necking phenomenon was clearly recognizable when samples were drawn. In contrast, drawing near the melting temperature of the polyethylene component produced less orientation of both the crystalline and amorphous phases, resulting in homogeneous deformation with lower drawing stress. These results indicated that the modification of the lower ductility of the polystyrene component was key to the effective structural arrangement of both phases by tensile drawing. Here, a solvent‐swelling technique was applied to improve polystyrene deformability even below its glass‐transition temperature. Tensile drawing after such a treatment successfully induced the orientation of both the crystalline and amorphous phases while retaining their initial continuities. A change in the deformation type from necking to homogeneous deformation was also confirmed for the stress–strain behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1731–1737, 2006  相似文献   

7.
To effectively orient the molecular chains of novel syndiotactic poly(vinyl alcohol) (PVA) microfibrillar fiber (PVA fibril), a high‐temperature zone‐drawing method was adopted. The PVA fibrils were directly prepared from the saponification and in situ fibrillation without a spinning procedure. The maximum draw ratio of the PVA fibril increased with a decrease in the syndiotactic diad (r‐diad) content, indicating that the deformability of PVA molecules was lowered in higher syndiotactic PVA. Degree of crystal orientations up to 0.990 were achieved by stretching the PVA fibril with the r‐diad content of 65.1% and the original degree of crystal orientation of 0.902 at 250 °C close to its crystal melting temperature (Tm). When the same draw ratio was applied to the fibrils, a higher crystal orientation was achieved for the fibrils having higher syndiotacticity. Wide‐angle X‐ray data show that the longitudinal crystal sizes of drawn PVA fibrils were larger in higher syndiotacticities. The degree of crystal orientation, crystallinity, Tm, longitudinal crystal size, and tensile strength of the maximum drawn PVA fibril with a r‐diad content of 65.1% were 0.99, 0.97, 279 °C, 187 Å, and 4.66 N/tex, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1263–1271, 2001  相似文献   

8.
Melt‐crystallized, low molecular weight poly(L ‐lactic acid) (PLLA) consisting of α crystals was uniaxially drawn by solid‐state extrusion at an extrusion temperature (Text) of 130–170 °C. A series of extrusion‐drawn samples were prepared at an optimum Text value of 170 °C, slightly below the melting temperature (Tm) of α crystals (~180 °C). The drawn products were characterized by deformation flow profiles, differential scanning calorimetry (DSC) melting thermograms, wide‐angle X‐ray scattering (WAXD), and small‐angle X‐ray scattering as a function of the extrusion draw ratio (EDR). The deformation mode in the solid‐state extrusion of semicrystalline PLLA was more variable and complex than that in the extensional deformation expected in tensile drawing, which generally gave a mixture of α and β crystals. The deformation profile was extensional at a low EDR and transformed to a parabolic shear pattern at a higher EDR. At a given EDR, the central portion of an extrudate showed extensional deformation and the shear component became progressively more significant, moving from the center to the surface region. The WAXD intensities of the (0010)α and (003)β reflections on the meridian as well as the DSC melting thermograms showed that the crystal transformation from the initial α form to the oriented β form proceeded rapidly with increasing EDR at an EDR greater than 4. Furthermore, WAXD showed that the crystal transformation proceeded slightly more rapidly at the sheath region than at the core region. This fact, combined with the deformation profiles (shear at the sheath and extensional at the core), indicated that the crystal transformation was promoted by shear deformation under a high pressure rather than by extensional deformation. Thus, a highly oriented rod consisting of only β crystals was obtained by solid‐state extrusion of melt‐crystallized, low molecular weight PLLA slightly below Tm. The structure and properties of the α‐ and β‐form crystals were also studied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 95–104, 2002  相似文献   

9.
Superior property enhancements in polymer–clay nanocomposites can be achieved if one can significantly enhance the nanoclay dispersion and polymer–clay interactions. Recent studies have shown that nanoclays can be dispersed in polymers using supercritical carbon dioxide (scCO2). However, there is need for a better understanding of how changing the clay modifier affects the clay dispersability by scCO2 and the resultant nanocomposite rheology. To address this, the polystyrene (PS)/clay nanocomposites with “weak” interaction (Cloisite 93A clay) and “strong” interaction (Cloisite 15A clay) have been prepared using the supercritical CO2 method in the presence of a co‐solvent. Transmission electron microscopy images and small‐angle X‐ray diffraction illustrate that composites using 15A and 93A clays show similar magnitude of reduction in the average tactoid size, and dispersion upon processing with scCO2. When PS and the clays are coprocessed in scCO2, the “dispersion” of clays appears to be independent of modifier or polymer–clay interaction. However, the low‐frequency storage modulus in the scCO2‐processed 15A nanocomposites is two orders of magnitude higher than that of 93A nanocomposites. It is postulated that below percolation (solution blended composites), the strength of polymer–clay interaction is not a significant contributor to rheological enhancement. In the scCO2‐processed nanocomposites the enhanced dispersion passes the percolation threshold and the interactions dictate the reinforcement potential of the clay–polymer–clay network. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 823–831, 2010  相似文献   

10.
Fibers of PA9‐T, a new semiaromatic polyamide containing a long aliphatic chain, were prepared by melt spinning. As‐spun fibers were subsequently drawn with a CO2 laser‐heated drawing system at different draw ratios and various drawing velocities. On‐line observations of drawing points deciphered two drawing states; namely, flow drawing and neck drawing, over the entire range of drawing. Drawing stress revealed that flow drawing is induced by slight drawing stress under a low draw ratio up to 3, and neck drawing is induced by relatively high drawing stress under a higher draw ratio. The effect of drawing stress and drawing velocity on the development of the structure and properties has been characterized through analysis of birefringence, density, WAXD patterns, and tensile, thermal, and dynamic viscoelastic properties. For the neck‐drawn fibers, almost proportional enhancements of crystallinity and molecular orientation with drawing stress were observed. The flow‐drawn fibers have an essentially amorphous structure, and birefringence and density do not always have a linear relation with properties. The fibers drawn at high drawing speed exhibit improved fiber structure and superior mechanical properties. The maximum tensile strength and Young's modulus of PA9‐T drawn fibers were found to be 652 MPa and 5.3 GPa, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 433–444, 2004  相似文献   

11.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

12.
The structure evolution of the oriented layer (skin) and unoriented layer (core) from injection‐molded isotactic polypropylene samples upon uniaxial drawing is probed by in situ synchrotron X‐ray scattering. The X‐ray data analysis approach, called “halo method”, is used to semiquantitatively identify the transformation process of crystal phase upon uniaxial drawing. The results verify the validation of the stress‐induced crystal fragmentation and recrystallization process in the deformation of the injection‐molded samples under different temperatures. Furthermore, the end of strain softening region in the engineering stress‐strain curves explicitly corresponds to the transition point from the stress‐induced crystal fragmentation to recrystallization process. Basically, the skin and core layers of the injection‐molded parts share the similar deformation mechanism as aforementioned. The stretching temperature which dramatically affects the relative strength between the entanglement‐induced tie chains and the adjacent crystalline lamellae determines the crystal structural evolution upon drawing. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1618–1631  相似文献   

13.
This article describes the oriented crystallization of poly(L ‐lactic acid) (PLLA) in uniaxially oriented blends with poly(vinylidene fluoride) (PVDF). Uniaxially drawn films of PLLA/PVDF blend with fixed ends were heat‐treated in two ways to crystallize PLLA in oriented blend films. The crystal orientation of PLLA depended upon the heat‐treatment process. The crystal c‐axis of the α form crystal of PLLA was highly oriented in the drawing direction in a sample cold‐crystallized at Tc = 120 °C, whereas the tilt‐orientation of the [200]/ [110] axes of PLLA was induced in the sample crystallized at Tc = 120 °C after preheating at Tp = 164.5–168.5 °C. Detailed analysis of the wide‐angle X‐ray diffraction (WAXD) indicated that the [020]/ [310] crystal axes were oriented parallel to the drawing direction, which causes the tilt‐orientation of the [200]/ [110] axes and other crystal axes. Scanning electron microscopy (SEM) suggested that oriented crystallization occurs in the stretched domains of PLLA with diameters of 0.5–2.0 μm in the uniaxially drawn films of PVDF/PLLA = 90/10 blend. Although the mechanism for the oriented crystallization of PLLA was not clear, a possibility was heteroepitaxy of the [200]/[110] axes of the α form crystal of PLLA along the [201]/[111] axes of the β form crystal of PVDF that is induced by lattice matching of d100(PLLA) ≈ 5d201(PVDF). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1376–1389, 2008  相似文献   

14.
We present results for the effects of a crosslinking agent, cure temperature, and UV flux on the electro‐optical properties of polymer‐dispersed liquid crystal (PDLC) cells. These cells were fabricated using a mixture of a liquid crystal (E8) and an acrylic monomer (CN135). The maximum in the first derivative of the transmission vs. applied, sinusoidal voltage (inflection voltage, Vinf), varies systematically with PDLC formulation and cure‐process conditions. For PDLC cells fabricated with a crosslinking agent (SR295), Vinf increases with increasing the concentration of SR295. However, for cells fabricated without the use of a crosslinking agent, Vinf decreases with increasing the UV flux and decreasing temperature. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 404–410, 2004  相似文献   

15.
The copolymerization of cyclohexene oxide (CHO) and carbon dioxide (CO2) was carried out under supercritical CO2 (scCO2) conditions to afford poly (cyclohexene carbonate) (PCHC) in high yield. The scCO2 provided not only the C1 feedstock but also proved to be a very efficient solvent and processing aid for this copolymerization system. Double metal cyanide (DMC) and salen‐Co(III) catalysts were employed, demonstrating excellent CO2/CHO copolymerization with high yield and high selectivity. Surprisingly, our use of scCO2 was found to significantly enhance the copolymerization efficiency and the quality of the final polymer product. Thermally stable and high molecular weight (MW) copolymers were successfully obtained. Optimization led to excellent catalyst yield (656 wt/wt, polymer/catalyst) and selectivity (over 96% toward polycarbonate) that were significantly beyond what could be achieved in conventional solvents. Moreover, detailed thermal analyses demonstrated that the PCHC copolymer produced in scCO2 exhibited higher glass transition temperatures (Tg ~ 114 °C) compared to polymer formed in dense phase CO2 (Tg ~ 77 °C), and hence good thermal stability. Additionally, residual catalyst could be removed from the final polymer using scCO2, pointing toward a green method that avoids the use of conventional volatile organic‐based solvents for both synthesis and work‐up. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2785–2793  相似文献   

16.
No systematic study has been reported on the lamellar thickening in atactic poly(acrylonitrile) (PAN) upon annealing because PAN, in the form of solution‐cast films or their drawn products, generally shows no small‐angle X‐ray scattering (SAXS) maximum corresponding to the lamellar thickness. In this work, PAN crystals were precipitated during the thermal polymerization of acrylonitrile in solution. The nascent PAN film, obtained by the filtration of the crystal suspension, exhibited a clear SAXS maximum revealing the lamellar structure. The lamellar thickening upon annealing of the nascent PAN films was studied in the temperature range 100–180 °C, where the degradation was minimal, as confirmed by the absence of an IR absorption band at 1605 cm−1 ascribed to the cyclized nitrile groups. Above 190 °C, the degradation of the samples was significant, and the SAXS became too broad to determine the scattering maximum. The long period was significantly affected by the annealing time (ta) and the temperature (Ta). Depending on ta, three stages were observed for the lamellar thickening behavior. The lamellar thickness stayed constant in stage I (ta = 0.5–3 min, depending on Ta), rapidly increased in stage II (ta = 0.5–8 min), and stayed at a constant value characteristic for each Ta at yet longer ta's in stage III. The lamellar thickness characteristic for Ta increased rapidly with increasing Ta at 165 °C (or higher), which was 152 °C lower than the estimated melting temperature of PAN (Tm = 317 °C). A possible mechanism for such lamellar thickening in PAN far below the Tm is discussed on the basis of the enhanced chain mobility in the crystalline phase above the crystal/crystal reversible transition at 165–170 °C detected by differential scanning calorimetry and wide‐angle X‐ray diffraction. The structural changes associated with annealing are also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2571–2579, 2000  相似文献   

17.
The effect of carbon dioxide (CO2) sorption on the lower critical solution temperatures of deuterated polybutadiene/polyisoprene blends was determined with in situ small‐angle neutron scattering. CO2 was a poor solvent for both polymers and exhibited very weak selectivity between the blend components. The sorption of modest concentrations of CO2, at pressures up to 160 bar, induced phase segregation at temperatures well below the binary‐phase‐separation temperature and caused an increased asymmetry in the lower critical solution temperature curve. The origin of solvent‐induced phase segregation in this weakly interacting polymer blend system was attributed predominantly to an exacerbation of the existing disparity in the compressibility of the components upon CO2 sorption. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3114–3126, 2003  相似文献   

18.
Well‐defined polyurethane–polydimethylsiloxane particles of tunable diameter in the range of 0.5–20 μm were synthesized in “one‐shot” by step‐growth polymerization using supercritical carbon dioxide (scCO2) as a dispersant medium. Polymerizations were carried out at 60 °C and above 25 MPa, after the solubility of each reactant in scCO2 has been determined in its typical reaction concentration. The synthesis of such copolymers was achieved by polyaddition between short aliphatic diols, that is, ethylene glycol, 1,4‐butanediol (BD) or polyethylene oxide (Mn = 200 g mol?1), and tolylene‐1,4‐di‐isocyanate (TDI) in the presence of mono or di‐isocyanate‐terminated polydimethylsiloxane (PDMS) as reactive stabilizers and dibutyltin dilaurate as a catalyst. The nature of the diol used as well as the functionality of the reactive stabilizer incorporated was found to have a dramatic effect on the molar mass and the morphology of the resulting product. Thus, copolymers obtained from the polyaddition of BD and TDI in the presence of di‐isocyanate‐terminated PDMS exhibit molar mass up to 90,000 g mol?1. Thermal behaviors of copolymers were also examined by differential scanning calorimetry. All samples exhibited only one glass transition temperature (Tg) and were found to be totally amorphous. A logical decrease of the Tg was observed as the length of the diol incorporated increased, that is, as the density of urethane linkages within the polymer decreased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5649–5661, 2007  相似文献   

19.
The crystallization behavior of long‐chain branched (LCB) polypropylene (PP) in the supercritical carbon dioxide (scCO2) atmosphere was investigated to show the influences of LCB and CO2 on the formation of γ‐crystal. The crystallization experiments were performed in CO2 atmosphere with the pressure from 1.3 to 10.4 MPa and temperature between 90 and 130 °C. The effects of LCB level, CO2 pressure, and crystallization temperature on the content of γ‐crystal were investigated. The results showed that the influence of LCB on the formation of γ‐crystal was obvious when PP was crystallized in CO2. The content of γ‐crystal increased with LCB level and reached a maximum of 88.2%. It could be explained that, as LCB increased the chainfolding energy of PP molecular chain and hindered it from folding back into crystal lamella, which made the formation of γ‐crystal easier. However, CO2 was the key factor in the formation of γ‐crystal, and the influence of CO2 on γ‐crystal was much significant than that of LCB. It was believed that the increase of free volume after dissolving of CO2 in PP was helpful in the formation of γ‐crystal. It was found that the content of γ‐crystal increased almost linearly with CO2 pressure (CO2 content), and the contribution of CO2 to γ‐crystal increased with pressure, while that of LCB increased with temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 441–451, 2008  相似文献   

20.
Oriented β‐phase films were obtained by utilizing two different techniques: conventional uniaxial drawing at 80 °C of predominantly α‐phase films, and by drawing almost exclusively β‐phase films obtained by crystallization at 60 °C from dimethylformamide (DMF) solution with subsequent pressing. Wide angle X‐ray diffraction (WAXD) and pole figure plots showed that with the conventional drawing technique films oriented at a ratio (R) of 5 still contained about 20% of phase α, a crystallinity degree of 40% and β‐phase crystallographic c ‐axis orientation factor of 0.655. Drawing at 90 °C and with R = 4 of originally β‐phase films results in exclusively β‐phase films with crystallinity degree of 45% and orientation factor of 0.885. Crystalline phase, crystallinity degree, and crystallographic c‐axis orientation factor of both phases were also determined for α‐phase oriented films obtained by drawing α‐phase films at 140 °C. For films drawn at 140 °C the α to β phase transition drops to about 22%. Reduction in crystallinity degree with increasing R is more pronounced at draw temperature of 140 °C compared with 80 °C. Moreover, for both phases the c ‐axis orientation parallel to the draw direction is higher at draw temperature of 140 °C than at 80 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2793–2801, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号