首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the lamellar growth direction, extinction rings, and spherulitic boundaries of poly(butylene succinate) (PBSU) on the spherulitic growth of poly(ethylene oxide) (PEO) were investigated in miscible blends of the two crystalline polymers. In the crystallization process from a homogeneous melt, PBSU first developed volume‐filling spherulites, and then PEO spherulites nucleated and grew inside the PBSU spherulites. The lamellar growth direction of PEO was identical with that of PBSU even when the PBSU content was about 5 wt %. PEO, which intrinsically does not exhibit banded spherulites, showed apparent extinction rings inside the banded spherulites of PBSU. The growth rate of a PEO spherulite, GPEO, was influenced not only by the blend composition and the crystallization temperature of PEO, but also by the growth direction with respect to PBSU lamellae, the boundaries of PBSU spherulites, and the crystallization temperature of PBSU, TPBSU. The value of GPEO first increased with decreasing TPBSU when a PEO spherulite grew inside a single PBSU spherulite. Then, GPEO decreased when TPBSU was further decreased and a PEO spherulite grew through many tiny PBSU spherulites. This behavior was discussed based on the aforementioned factors affecting GPEO. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 539–547, 2009  相似文献   

2.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

3.
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(β‐hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small‐angle X‐ray scattering (SAXS). As the PMA content increases in the blends, the glass‐transition temperature and cold‐crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium‐melting‐point depression, is −0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PHB. The radial growth rates of spherulites were analyzed with the Lauritzen–Hoffman model. The spherulites of PHB were volume‐filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1860–1867, 2000  相似文献   

4.
The thermal fractionation kinetics of a linear low‐density polyethylene (LLDPE) during Successive Self‐Nucleation and Annealing (SSA) is investigated by fast scanning chip‐calorimetry (FSC), by systematically varying the holding times (ts) at each fractionation temperature (Ts). The range of explored fractionation times spans four orders of magnitude, from 0.001 to 10 s. Discernible thermal fractions are already detected in the very early stages of the process, at ts shorter than one second. As ts increases, the melting endotherm after SSA indicates a progressive lamellar thickening and narrowing of the thicknesses distribution of the various crystalline fractions. The largest variations are observed for the families of crystals containing the longest crystallizable sequences, which also undergo a change of their relative content as a consequence of self‐nucleated crystallization at Ts. The quality of the thermal fractionation obtained in 10 seconds with FSC is equivalent to that of conventional differential scanning calorimetry SSA (ts = 300 s). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2200–2209  相似文献   

5.
The effect of liquid–liquid phase separation (LLPS) on the crystallization behavior of poly(ethylene‐ran‐vinyl acetate) with a vinyl acetate content of 9.5 wt % (EVA‐H) in the critical composition of a 35/65 (wt/wt) EVA‐H/paraffin wax blend was investigated by small‐angle light and X‐ray scattering methods and rheometry. This blend exhibited an upper critical solution temperature (UCST) of 98°C, and an LLPS was observed between the UCST and the melting point of 88°C for the EVA‐H in the blend. As the duration time in the LLPS region increased before crystallization at 65°C, both the spherulite size and the crystallization rate of the EVA‐H increased, but the degree of the lamellar ordering in the spherulite and the degree of crystallinity of the EVA‐H in the blend decreased. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 707–715, 2000  相似文献   

6.
The structure and morphology of a novel polyamide, nylon‐10,14, and its lamellar crystals from dilute solution were examined by transmission electron microscopy and wide‐angle X‐ray diffraction (WAXD). Both the electron‐diffraction pattern and WAXD data demonstrated that nylon‐10,14 adopts the structure of a triclinic lattice similar to that of the traditional nylon‐66 but with a corresponding increase of the c parameter to 3.23 nm. In addition, the thermal behavior of melt‐crystallized nylon‐10,14 was investigated by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The glass‐transition temperature of nylon‐10,14 determined by the DMA data was 46.6°C. DSC indicated that the multiple melting behavior of isothermally crystallized nylon‐10,14 probably results from the melt and recrystallization mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1422–1427, 2003  相似文献   

7.
In this work, the melting behaviors of nonisothermally and isothermally melt‐crystallized poly(L ‐lactic acid) (PLLA) from the melt were investigated with differential scanning calorimetry (DSC) and temperature‐modulated differential scanning calorimetry (TMDSC). The isothermal melt crystallizations of PLLA at a temperature in the range of 100–110 °C for 120 min or at 110 °C for a time in the range of 10–180 min appeared to exhibit double melting peaks in the DSC heating curves of 10 °C/min. TMDSC analysis revealed that the melting–recrystallization mechanism dominated the formation of the double melting peaks in PLLA samples following melt crystallizations at 110 °C for a shorter time (≤30 min) or at a lower temperature (100, 103, or 105 °C) for 120 min, whereas the double lamellar thickness model dominated the formation of the double melting peaks in those PLLA samples crystallized at a higher temperature (108 or 110 °C) for 120 min or at 110 °C for a longer time (≥45 min). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 466–474, 2007  相似文献   

8.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

9.
Poly(vinylidene fluoride) (PVDF) chains with the same expanded state were obtained by dissolving PVDF resin in good solvent. Then, the crystallization of PVDF chains from mixed solvents composed of its good solvent and nonsolvent was investigated. N,N‐dimethylformamide (DMF) and ethanol were used as good solvent and nonsolvent of PVDF, respectively. The crystalline phases of PVDF were characterized by Fourier transform infrared (FTIR) spectroscopy and wide angle X‐ray diffraction (WAXD). For the crystallization of PVDF chains from mixed solvents, low ethanol content favored the formation of β phase, while high ethanol content resulted predominantly in the α phase. Different crystallization morphology was observed from the scanning electron microscopy (SEM) images. The obvious spherulite morphology disappeared with the increase in ethanol content in mixed solvent. According to thermal analyses, the crystallized PVDF from mixed solvents with high ethanol content had lower onset melting temperatures than that from low ethanol content. Smaller lamellar thickness calculated from WAXD data reasoned the low onset melting temperatures. The above results indicated that the crystallization of PVDF chains from mixed solvent was a “controlled” process by ethanol content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 575–581, 2010  相似文献   

10.
Of the three melting peaks typical of a propylene–ethylene random copolymer (with 5.1 wt % ethylene) crystallized between 110 and 140 °C, the two higher peaks result from primary and secondary isothermal crystallization, whereas the material crystallized on cooling gives the lowest peak. In contrast to polypropylene homopolymers, which show strong morphological changes developing from the center of a spherulite, copolymer specimens are uniformly crosshatched. The highest melting peak is related to an open crosshatched framework of primary lamellae, and the next lower peak is related to later forming subsidiary lamellae filling the intervening space. The origin and nature of these double peaks are discussed in terms of the fractional crystallization and the ensuing constraints placed on isothermal lamellar thickening as a result of the exclusion of the comonomer from the polypropylene lattice. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3318–3332, 2004  相似文献   

11.
Summary: The polymorphisms in poly(hexamethylene terephthalate) (PHT), along with their associated melting and spherulite morphologies, were examined by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and polarized‐light microscopy (PLM). The morphology and crystal cells were dependent on the temperature of crystallization. When melt‐crystallized at low temperatures (90–135 °C), PHT showed at least five melting peaks and two re‐crystallization peaks upon DSC scanning, and the samples displayed various fractions of both α and β crystals. However, only a single melting peak was obtained in PHT melt‐crystallized at 140 °C or above, which displayed a single type of β crystal. In addition, two different forms of spherulites were identified in melt‐crystallized PHT, with one being a typical Maltese‐cross spherulite containing the α crystal, and the other being a dendrite‐type packed mainly with the β crystal. This study provides timely evidence for a critical interpretation of the relationship between multiple melting and polymorphisms (unit cells and spherulites) in polymers, including semi‐crystalline polyesters.

WAXD diffractograms for PHT melt‐crystallized at 140 °C, revealing a single type of β‐crystal cell.  相似文献   


12.
We investigated the structure and deformation behavior of the thermoplastic polyurethane (TPU) spherulite by optical microscopy, tensile testing, Hv light scattering, and small angle X‐ray scattering. The TPU spherulite structure obtained by melt crystallization was coarse consisting of bundle‐like structure containing hard segment (HS) lamellar domain in which the HS domains were stacked and the HS chain direction was perpendicular to the longitudinal axis of the HS domain. By stretching, the spherulite was deformed to ellipsoidal one and the stacked HS lamellar domains were tilted in the stretching direction. The deformed spherulite and the tilted HS domain in the spherulite were recovered to the unstretched state by retraction. The recovery of the structure is ascribed to the characteristic spherulite structure consisting of rubbery soft segment matrix physically cross‐linked with the stacked HS domain. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1585–1594  相似文献   

13.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

14.
The multiple melting behavior of syndiotactic polystyrene (sPS) and its possible mechanisms via preexisting lamella types and/or scanning-induced lamellar reorganization were investigated by using X-ray diffraction, DSC, and scanning electron microscopy. Melt-crystallized sPS samples, upon DSC scanning, exhibited three melting peaks (I, II, III). A morphological analysis showed that flat-on lamellae develop first, which yield P-I and P-II melting, and during scanning recrystallize to thickened edge-on lamellae with a P-III melting peak. Upon scanning, melting of P-I (crystal of the lowest melting peak) is followed by repacking into thickened P-III crystal, the lamella of which also reoriented to a perpendicular orientation. The P-II crystal, however, melts at temperatures too close to the melting temperature of P-III; thus, during scanning up, the P-II crystal simply melts without sufficient time to repack into the thickened P-III crystal. In addition to the P-III crystal species that can be added by melting P-I and repacking to P-III, it is believed that preexistence of different lamella crystals was jointly responsible for the multiple melting. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3210–3221, 2000  相似文献   

15.
The melting behavior of poly(butylene succinate‐co‐adipate) (PBSA) isothermally crystallized from the melt was investigated by differential scanning calorimetry. Triple, double, or single melting endotherms were observed in subsequent heating scan for the samples isothermally crystallized at different temperatures. These endothermic peaks were labeled as I, II, and III for low‐, middle‐, and high‐temperature melting endotherms, respectively. The independence of endotherm III to the crystallization temperature, the existence of an exothermic crystallization peak just below the endotherm III, and the heating rate dependence of endotherm III indicated that endotherm III was due to the remelting of recrystallized lamellar during a heating scan. The influence of crystallization time on the melting behavior of PBSA showed that endotherms II and III developed prior to endotherm I; endotherm III developed rather simultaneously with endotherm II. Further investigation showed that the peak temperature of endotherm I increased linearly with the logarithm of the crystallization time. It suggested that endotherm II was attributed to the melting of the primary lamellae, while endotherm I was due to the melting of secondary lamellae. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3077–3082, 2005  相似文献   

16.
The isothermal crystallization and subsequent melting process in semicrystalline poly(4‐methyl‐1‐pentene) were investigated via temperature‐dependent small‐ and wide‐angle X‐ray scattering and Flash DSC techniques. In a phase diagram of inversed crystalline lamellar thickness and temperature, the crystallization and melting lines can be described by two linear dependencies of different slopes and different limiting temperatures at infinite lamellar thickness. Upon subsequent heating, recrystallization lines with different slopes were observed for samples with different lamellar thickness, indicating changes in surface free energy difference between stabilized crystallites and mesomorphic phase. The surface free energy of native crystallites with extended‐chain conformation decreased with increasing lamellar thickness due to a more ordered surface region and less chain ends which changes cooperatively with mesomorphic phase. The surface free energy of stabilized crystallites remained unchanged for all lamellar thickness. Therefore, the recrystallization lines with different slopes are consequences of changes in surface free energy of mesomorphic phase. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 219–224  相似文献   

17.
The crystallization behavior and morphology of polymerized cyclic butylene terephthalate (pCBT) were investigated by thermal differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The spherulite growth rate was analyzed based on the Hoffman and Lauritzen theory to better understand the crystallization behavior. We found four typical morphologic features of pCBT corresponding to the crystallization temperature spectrum: usual negative spherulite, unusual spherulite, mixed birefringence spherulite coexisting with boundary crystals, and highly disordered spherulitic crystallites. The Avrami crystallization kinetics confirmed the occurrence of combined heterogeneous nucleation accompanied by a change in the spherulitic shape of pCBT, which also agreed with the PLM results. The equilibrium melting temperature and glass transition temperature of pCBT were 257.8 °C and 41.1 °C, respectively. A regime II–III transition occurred at 200.9 °C, which was 10 °C lower than that reported for poly(butylene terephthalate) (PBT). Coinciding with and attributed to the regime transition, the boundary crystal disappeared at temperatures above 200 °C and the morphology changed from the mixed type to highly disordered spherulitic crystallites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1127–1134, 2010  相似文献   

18.
Differential scanning calorimetry and fast scanning chip calorimetry heating experiments were carried out in a wide range of rates of temperature change from 0.2 to 60,000 K s?1 for isothermally crystallized polyamide 6. Multiple melting peaks were observed. With increasing heating rate, the highest‐temperature endotherm shifts toward lower temperatures and finally disappears due to suppression of the reorganization. The critical heating rate to suppress reorganization was 15–50 times higher than the critical cooling rate to cause complete vitrification. On heating at rates higher than the critical heating rate to suppress reorganization, there were observed two melting processes of different kinetics. Four possible assignments were considered regarding the two crystal populations. These are (i) crystals grown during primary and secondary crystallization, (ii) crystals grown in the bulk and nucleated at the surface/substrate, (iii) crystals, which are subjected to different local stress originating from heterogeneities in interlamellar regions, and (iv) the crystal/mesophase polymorphism. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2126–2138  相似文献   

19.
Blends of poly(L ‐lactic acid) (PLA) and poly(butylene succinate) (PBS) were prepared in various compositions via melt mixing, and the morphological changes were investigated with differential scanning calorimetry and synchrotron wide‐angle and small‐angle X‐ray scattering techniques at a heating rate of 10 °C/min. Differential scanning calorimetry thermograms of PLA/PBS blends showed two distinct melting peaks over the entire composition range. The exothermal peak for PLA shifted significantly to a lower temperature and overlapped with that of PBS around 100 °C. A depression of the melting point of the PLA component via blending was observed. The synchrotron wide‐angle X‐ray scattering during heating revealed that there was no cocrystallization or crystal modification via blending. The synchrotron small‐angle X‐ray scattering data showed that well‐defined double‐scattering peaks (or peaks with a clear scattering shoulder) appeared during crystallization, indicating that this system possessed dual lamellar stacks. These peaks were deconvoluted into two components with a peak separation computer program, and then the morphological parameters of each component were obtained by means of the correlation function. The long period and average lamellar thickness of the two components before melting decreased with an increasing content of the other polymer component. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1931–1939, 2002  相似文献   

20.
No systematic study has been reported on the lamellar thickening in atactic poly(acrylonitrile) (PAN) upon annealing because PAN, in the form of solution‐cast films or their drawn products, generally shows no small‐angle X‐ray scattering (SAXS) maximum corresponding to the lamellar thickness. In this work, PAN crystals were precipitated during the thermal polymerization of acrylonitrile in solution. The nascent PAN film, obtained by the filtration of the crystal suspension, exhibited a clear SAXS maximum revealing the lamellar structure. The lamellar thickening upon annealing of the nascent PAN films was studied in the temperature range 100–180 °C, where the degradation was minimal, as confirmed by the absence of an IR absorption band at 1605 cm−1 ascribed to the cyclized nitrile groups. Above 190 °C, the degradation of the samples was significant, and the SAXS became too broad to determine the scattering maximum. The long period was significantly affected by the annealing time (ta) and the temperature (Ta). Depending on ta, three stages were observed for the lamellar thickening behavior. The lamellar thickness stayed constant in stage I (ta = 0.5–3 min, depending on Ta), rapidly increased in stage II (ta = 0.5–8 min), and stayed at a constant value characteristic for each Ta at yet longer ta's in stage III. The lamellar thickness characteristic for Ta increased rapidly with increasing Ta at 165 °C (or higher), which was 152 °C lower than the estimated melting temperature of PAN (Tm = 317 °C). A possible mechanism for such lamellar thickening in PAN far below the Tm is discussed on the basis of the enhanced chain mobility in the crystalline phase above the crystal/crystal reversible transition at 165–170 °C detected by differential scanning calorimetry and wide‐angle X‐ray diffraction. The structural changes associated with annealing are also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2571–2579, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号