首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation, Properties, and Molecular Structures of Dimethylaminomethyl Ferrocenyl Compounds of selected Elements of Group 13 and 14 Dimethylmetalchlorides of gallium and indium react with dimethylaminomethylferrocenyllithium (FcNLi) to give the corresponding dimethylmetaldimethylaminomethylferrocenes 1 and 2 [Me2MFcN; M=Ga, In]. In a similar manner dialkylmetaldichlorides of germanium and tin yield the expected chlordialkylmetaldimethylaminomethylferrocenes 3 – 5 [R2(Cl)MFcN; M=Ge; R = Me ( 3 ), M=Sn; R=Me ( 4 ), Ph ( 5 )]. In a reaction of Me3Al and Me2AlCl with dimethylaminomethylferrocene the formation of the 1 : 1 adducts 7 and 8 could be observed. All compounds were characterised by 1H and 13C nmr spectroscopy. The molecular structures of 1 , 3 , 4 and 7 were determined. 3 and 4 build in contrast to 1 monomeric molecules with chelat rings as a result of the M–N coordination. Compound 7 consist of monomeric molecules with 4 coordinated Al atoms.  相似文献   

2.
Syntheses and Structures of [Cu20Ga10Cl4Se23(PEt2Ph)12] and [Cu14In6Se7(iPrSe)18] CuCl and GaCl3 react with Se(SiMe3)2 in thf solution to yield in the presence of PEt2Ph [Cu20Ga10Cl4Se23(PEt2Ph)12] ( 1 ). Reaction of CuCl, InCl3 and TMEDA with iPrSeSiMe3 in DME results in the crystallisation of [Cu14In6Se7(iPrSe)18] ( 2 ). The structures of 1 and 2 were determined by X‐ray single crystal structure analysis and display two new types of molecular clusters formed by the elements of group 11, 13, and 16. However, both cluster structures show no analogy to the structures of the related bulk phases.  相似文献   

3.
Preparation, Properties, and Molecular Structures of Dimethylmetal Alkoxides and Amides of Aluminium and Gallium Dimethylaluminium‐ ( 1 ) and Dimethylgallium‐o‐methoxyphenyl‐1‐ethoxide ( 2 ) were obtained by reaction of Me3Al and Me3Ga respectively with o‐Methoxyphenyl‐1‐ethanol in n‐pentane. Dimethylaluminium‐ ( 3 ) and dimethylgallium‐o‐methoxyphenyl‐2‐ethylamide ( 4 ) were prepared by treatment of Me2AlCl and Me2GaCl respectively with Lithium‐o‐methoxyphenyl‐2‐ethylamide. Trimethylgallium‐o‐methoxyphenylmethylamine‐Adduct ( 5 ) was isolated using reaction of Me3Ga with the corresponding amine. The compounds were characterised by 1H‐, 13C‐, and 27Al n.m.r. spectroscopy. The molecular structures of 2 and 5 were determined by X‐ray diffraction. Compounds 1 – 4 form brigded dimeric molecules. The bond distances of the central Ga2O2 ring in 2 correspond to those of compounds of similar structure.  相似文献   

4.
During the Formation of Metalloid Gallium Clusters Phosphoniumbetaines lead to a Ga12 Network with unusual Bonding Properties The reaction of a 3:1 mixture of a phosphanid and a phosphorus ylide with a metastable solution of GaBr leads to a neutral, metalloid Ga12‐cluster compound. This for the frist time observed metalloid cluster with positivly polarized phosphonium ligandes and a negativly polarized Ga12‐core will be disussed by quantum chemical calculations with regard to the amount of the charge transfer.  相似文献   

5.
6.
Synthesis and Structures of Amido‐ and Imidobridged Clusters of Electron‐rich Transition Metals We report in this article the results, which could be obtained within the DFG‐Project “Nitridobrücken zwischen Übergangsmetallen und Hauptgruppenelementen”. Reactions of electron‐rich transition metal compounds with either stannylated or lithiated amine derivatives lead in the presence of phosphines in different organic solvents to the formation of a large amount of nitrogenbridged transition metal clusters. The structures of 1 — 27 have been characterized by single crystal X‐ray‐structure analysis.  相似文献   

7.
Surface Compounds of Transition Metals. XLI [1] Preparation and Properties of Organochromium Compounds by Reaction of Phillips Catalysts with Ethylene Reaction of reduced Phillips catalysts with ethylene at 300 °C deactivates the catalyst; supported organochromium compounds are formed. These can be cleaved from the silica support by HCl and other acids, and transferred into solution by extraction with CH3OH. Chromatography yields fractions of organochromium compounds which differ by CH2 moieties. XPS, 1/2H NMR, and mass spectra as well as magnetic measurements prove that an ensemble of (RnCp)CrCl2(CH3OH) (RnCp = alkylated cyclopentadienyl) has been formed. The RnCp ligand results from a chromium‐assisted oxidative coupling of the olefin with or without CC‐cleavage. According to UV/Vis and mass spectroscopy Cl and CH3OH can be substituted for other anions and donor molecules. Without a donor dinuclear, Cl‐bridged molecules are obtained, of which [(1,2,3‐Me3Cp)CrCl2]2 was established by crystal structure analysis. Reaction with O2 reversibly leads to chromium(V) compounds of the type (R2Cp)Cr(O)Cl2.  相似文献   

8.
1,4‐Di(isopropyl)‐1,4‐diazabutadiene as a Reagent for the Trapping of Monomeric Fragments of the Tetragalliumcluster Ga4[C(SiMe3)3]4 – Formation of an Unsaturated GaN2C2 Heterocycle and an Oxidation Product Containing a Ga‐O‐O‐Ga Group The tetrahedral tetragallium cluster Ga4[C(SiMe3)3]4 ( 1 ) dissociates upon dissolution to yield the monomeric fragments Ga‐R [R = C(SiMe3)3]. These monomers could be trapped now by the treatment of their solutions with 1,4‐di(isopropyl)‐1,4‐diazabutadiene. The product of the cycloaddition reaction ( 2 ) possesses a five‐membered GaN2C2 heterocycle with a coordinatively unsaturated gallium atom and an endocyclic C=C double bond. 2 is rather sensitive towards oxidation by traces of air. The contact with oxygen yielded a digallium peroxide [(C2N2iPr2)RGa‐O‐O‐GaR(C2N2iPr2)] ( 3 ) which was isolated in a very low yield only and which has a gallium atom attached to each oxygen atom of the inner peroxo group. Both chelating ligands of 3 possess an unpaired electron.  相似文献   

9.
Treatment of the digallium compound R2Ga–GaR2 [ 1 , R = CH(SiMe3)2] with a broad variety of functionalized carboxylic acids in the presence of water yielded μ‐hydroxo‐μ‐carboxylatodigallium compounds ( 2 – 10 ) containing intact Ga–Ga bonds in high to moderate yields. The compounds form dimeric formula units in which the unsupported Ga–Ga bonds are bridged by two hydroxo and two carboxylato ligands. Each gallium atom is terminally coordinated by a bulky alkyl group. NMR spectroscopy revealed mixtures of two isomeric compounds in solution in all cases. The second component may show a different bridging mode with each Ga–Ga bond bridged by a bidentate carboxylato ligand to form Ga2O2C five‐membered heterocycles.  相似文献   

10.
Synthesis and Molekular Structures of N‐substituted Diethylgallium‐2‐pyridylmethylamides (2‐Pyridylmethyl)(tert‐butyldimethylsilyl)amine ( 1a ) and (2‐pyridylmethyl)‐di(tert‐butyl)silylamine ( 1b ) form with triethylgallane the corresponding red adducts 2a and 2b via an additional nitrogen‐gallium bond. These oily compounds decompose during distillation. Heating under reflux in toluene leads to the elimination of ethane and the formation of the red oils of [(2‐pyridylmethyl)(tert‐butyldimethylsilyl)amido]diethylgallane ( 3a ) and [(2‐pyridylmethyl)‐di(tert‐butyl)silylamido]diethylgallane ( 3b ). In order to investigate the thermal stability solvent‐free 3a is heated up to 400 °C. The elimination of ethane is observed again and the C‐C coupling product N, N′‐Bis(diethylgallyl)‐1, 2‐dipyridyl‐1, 2‐bis(tert‐butyldimethylsilyl)amido]ethan ( 4 ) is found in the residue. Substitution of the silyl substituents by another 2‐pyridylmethyl group and the reaction of this bis(2‐pyridylmethyl)amine with GaEt3 yield triethylgallane‐diethylgallium‐bis(2‐pyridylmethyl)amide ( 5 ). The metalation product adds immediately another equivalent of triethylgallane regardless of the stoichiometry. The reaction of GaEt3 with 2‐pyridylmethanol gives quantitatively colorless 2‐pyridylmethanolato diethylgallane ( 6 ).  相似文献   

11.
Crystal Structure of CF3TeTeCF3. Synthesis, Characterization, and Properties of CF3TeI Te2(CF3)2 crystallizes in the monoclinic space group P21/a with four formular units in the unit cell. The lattice constants are a = 10.13(1) Å, b = 11.489(7) Å, c = 6.822(8) Å and β = 101.20(8)°. CF3TeI is prepared by a quantitative reaction of Te2(CF3)2 with equimolar amounts of iodine. This compound is very instable, no isolation is possible. NMR spectra have been registrated. From metathesis reactions CF3TeX (X = C?CC6H5, t-C4H9, SCN, SC6F5) are prepared.  相似文献   

12.
Chemistry of Gallium. 20. Synthesis and Structures of Novel Triphenylsilyl and Triphenylgermyl Substituted Gallanes and Oligogallanes – [Ga3(GePh3)6], the First Linear Trigallane From the raction of sonochemically prepared “GaI” with LiEPh3 (E = Si, Ge) the compounds [Li(THF)2][GaI(EPh3)3] (E = Si: 22 , E = Ge: 24 ), [Li(THF)4][GaI(SiPh3)3] ( 23 ), [Li(THF)4][Ga2(SiPh3)5] ( 21 ) and [Li(THF)4][Ga3(GePh3)6] ( 25 ) as well as polymeric Li(THF)I ( 20 ) were obtained and structurally characterized. 21 is a monoanionic digallane, exhibiting a trigonal planar and a tetrahedrally coordinated gallium centre. 25 has a linear Ga3 core, where the terminal gallium atoms bear three GePh3‐groups, each. The central Ga atom is only 2‐coordinated. Thus, 25 may be a valuable hint to the formation of larger gallium clusters with “naked” gallium atoms. Derivatives of 21 and 25 have been studied by DFT methods.  相似文献   

13.
Synthesis, Crystal Structure, and Properties of Vanadium(II) Tetrachloroaluminate The reaction of vanadium dichloride and aluminium trichloride yields vanadium(II) tetrachloroaluminate. Amber cuboid crystals can be obtained by slow cooling of the melt. V(AlCl4)2 crystallizes in the monoclinic space group I2/c (a = 1284.6(3), b = 776.3(2), c = 1163.5(2) pm, β = 92.376(10)°) and is therefore isotypic to Co(AlCl4)2. The structure contains chains build of VCl6 octahedra and AlCl4 tetrahedra sharing corners and edges with each other. The temperature dependence of the magnetic susceptibility follows Curie‐Weiss behaviour (μ = 3.88(2) μB, Θ = ?9(1) K) complying with the spin‐only paramagnetism expected of d3 ions.  相似文献   

14.
Syntheses, Structures, Electrochemistry and Optical Properties of Alkyne‐Functionalized 1,3,2‐Diazaboroles and 1,3,2‐Diazaborolidenes The reaction of 2‐bromo‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) with lithiated tert‐butyl‐acetylene and lithiated phenylacetylene affords the 2‐alkynyl‐functionalized 1,3,2‐diazaboroles 4 and 5 as a thermolabile colorless oil ( 4 ) or a solid ( 5 ). Similarly 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1H‐1,3,2‐benzodiazaborole ( 6 ) was converted into the crystalline 2‐alkynyl‐benzo‐1,3,2‐diazaboroles 7 and 8 by treatment with LiC≡C–tBu or LiC≡CPh, respectively. 2‐Ethynyl‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 2 ) was metalated with tert‐butyl‐lithium and subsequently coupled with 2‐bromo‐1,3,‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) to afford bis(1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborol‐2‐yl)acetylene ( 9 ) as thermolabile colorless crystals. Analogously coupling of the lithiated species with 6 or with 2‐bromo‐1,3‐ditert‐butyl‐1,3,2‐diazaborolidine ( 11 ) gave the unsymmetrically substituted acetylenes 10 or 12 , respectively, as colorless solids. Compounds 4 , 5 , 7 – 10 and 12 are characterized by elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}, 13C{1H}‐NMR, MS). The molecular structures of 5 , 8 and 9 were elucidated by X‐ray diffraction analyses.  相似文献   

15.
16.
17.
Synthesis and Characterization of New Cyclic and Cage‐like Indium — Phosphorus and Indium — Arsenic Compounds The reaction of InEt3 with H2ESiiPr3 initially yields the cyclic compound [Et2InP(H)SiiPr3]2 ( 2 ). 2 appears as a mixture of cis and trans isomers and has been characterized by 31P‐NMR spectroscopy, IR spectroscopy, and mass spectrometry. 2 decomposes in solution under elimination of ethane during a few days to form [EtInPSiiPr3]4 ( 3 ) with a cage‐like structure. The analogous arsenic compound [EtInAsSiiPr3]4 ( 4 ) can be prepared by reaction of InEt3 with H2AsSiiPr3. Central structural motif of 3 and 4 is an In4E4 heterocubane like structure (E = P, As), whereas the reaction of InEt3 with H2PSiMe2Thex (Thex = CMe2iPr) yields [EtInPSiMe2Thex]6 ( 5 ) with a hexagonal prismatic structure.  相似文献   

18.
19.
[PtIn6][GaO4]2 – The First Oxide Containing [PtIn6] Octahedra. Preparation, Characterisation, and Rietveld Refinement – With a Remark to the Solid Solution Series [PtIn6][GaO4]2‐x[InO4]x (0 < x ≤ 1) The novel oxides [PtIn6][GaO4]2–x[InO4]x (0 < x ≤ 1) are formed by heating intimate mixtures of Pt, In, In2O3, and Ga2O3 in the corresponding stoichiometric ratio in corundum crucibles under an atmosphere of argon (1220 K, 70 h). The compounds are black, stable in air at room temperature, reveal a semiconducting behaviour, and decompose only in oxidizing acids. X‐ray powder diffraction patterns can be indexed by assuming a face centered cubic unit cell with lattice parameters ranging from a = 1001.3(1) pm (x = 0) to a = 1009.3(1) pm (x = 1). According to a Rietveld refinement [PtIn6][GaO4]2 crystallizes isotypic to the mineral Pentlandite (Fm3m, Z = 4, R(profile) = 6.11%, R(intensity) = 3.95%). The characteristic building units are isolated [PtIn6]10+ octahedra which are linked via [GaO4]5– tetrahedra to a three dimensional framework. Starting from [PtIn6][GaO4]2 the substitution of Ga3+ ions by larger In3+ ions leads to the formation of a solid solution series according to the general formula [PtIn6][GaO4]2–x[InO4]x and becomes apparent in an increase of the lattice parameter.  相似文献   

20.
Syntheses and Crystal Structures of Cu and Ag Complexes with [Ta6S17]4— Ions as Ligands In the presence of phosphines saturated solutions of the thiotantalates (NEt4)4[(Ta6S17)] · 3MeCN react with copper or silver salts to give new heterobimetallic Ta—M—S clusters (M = Ag, Cu). These clusters contain the intact cluster core of the [Ta6S17]4— anion. Compounds [Cu(PMe3)4]3[(Ta6S17)Cu(PMe3)] · 2MeCN ( 1 ), (NEt4)[(Ta6S17)Ag3(PMe2iPr)6] · 5MeCN ( 2 ), [(Ta6S17)Cu4 (PMe2iPr)8] · MeCN ( 3 ), [(Ta6S17)Cu5Cl(PMe2iPr)9] · MeCN ( 4 ) and [Ta2Cu2S4Cl2(PMe2iPr)6] · 2MeCN ( 5 ) are presented herein. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号