首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new hybrid inorganic‐organic compounds with different chain/layer structures, [Ag(bipy)]n · n(Hdpa) · n(DMF) · n(H2O) ( 1 ) and [Ag(dpa)0.5(bix)0.5]n ( 2 ) [H2dpa = diphenic acid, bipy = 4, 4′‐bipyridine, bix = 4, 4′‐bis(imidazol‐1‐ylmethyl)benzene, DMF = N,N′‐dimethylformamide] were successfully synthesized and characterized by elemental analysis, IR spectroscopy, and powder X‐ray diffraction. Single X‐ray analysis reveals that compound 1 is a one‐dimensional (1D) supramolecular double chain structure constructed by the combination of coordination bonds, hydrogen bonds, weak Ag ··· O and argentophilic interactions, compound 2 is a two‐dimensional (2D) undulated layer structure constructed by coordination bonds, weak Ag ··· O and argentophilic interactions. Moreover, the photoluminescent properties of the two compounds were also investigated in the solid state at room temperature.  相似文献   

2.
Green conversion of three‐dimensional organometallic [Ag26‐tp)]n ( 1 ) coordination polymer (CP) nanosheets, prepared by sonochemical procedure, to three‐dimensional organometallic [Ag24‐tp)(apy)2]n ( 2 ) (where H2tp = terephthalic acid and apy = 2‐aminopyridine) CP nanoparticles has been observed upon solid‐state mechanochemical reaction of compound 1 with 2‐aminopyridine. The AgO3 Ag ···C6 coordination sphere of silver ion in 1 changed to NO2 Ag ···C coordination sphere in 2 during this mechanochemical addition. These samples were characterized by infrared spectroscopy, thermogravimetric and differential thermal analyses, X‐ray powder diffraction and scanning electron microscopy.  相似文献   

3.
Reaction of the ligands 2‐phenyl‐1H‐1,3,7,8‐tetraazacyclopenta[l]phenanthrene (PTCP) and benzene‐1,3‐dicarboxylic acid (m‐H2BDC) with Ln2O3 under hydrothermal conditions lead to three isomorphous coordination polymers [Ln2(PTCP)2(m‐BDC)3·H2O]n (Ln = Tm, 1 ; Nd, 2 ; Ce, 3 ). The coordination polymers crystallize in monoclinic, space group P21/m with a = 9.8340(2), b = 17.9140(4), c = 15.6050(3) Å, β = 100.51(3)° for 1 , with a = 9.8423(3), b = 18.3562(4), c = 15.6209(3) Å, β = 102.138(3)° for 2 , and with a = 9.8620(2), b = 18.4960(4), c = 15.6530(3) Å, β = 102.42(3)° for 3 , respectively. The metal ions (Ln3+) are located in an octacoordinated environment and the dinuclear [Ln2O12N4] units act as octahedral secondary building units (SBU), which are bridged in two coordination modes by six m‐BDC ligands to form a three‐strand‐like chain. These chains are decorated by PTCP ligands and form unique three zipper‐like structures, which are further assembled into three‐dimensional supramolecular nets by π ··· π stacking interactions. Additionally, hydrogen bonds are observed in the structures. Furthermore, compounds 1 – 3 were studied by IR spectrocopy and thermogravimetric analyses.  相似文献   

4.
Four new bridged silver(I) complexes, namely [Ag22‐teda)(μ2‐fbc)2] ( 1 ), [Ag22‐1,6‐dah)2](bpdc) · 4H2O ( 2 ), [Ag22‐2‐ap)(2‐ap)(bnb)] · 0.34H2O ( 3 ), [Ag22‐pyc)2(2‐apy)2] · 0.5H2O ( 4 ), have been synthesized and characterized by elemental analysis and crystallographic methods [fbc = 4‐fluorobenzoate, teda = triethylenediamine ( 1 ); bpdc = biphenyl‐4,4′‐dicarboxylate, 1,6‐dah = 1,6‐diaminohexane ( 2 ); bnb = 3,5‐binitrobenzoate, 2‐ap = 2‐aminopyrimidine ( 3 ); pyc = 3‐pyridinecarboxylate acid, 2‐apy = 2‐aminopyridine ( 4 )]. Complex 1 contains a 1D linear chain paralleling to the c‐axis, whereas in complex 2 silver(I) atoms were bridged by the 1,6‐dah ligand into a zigzag chain, further giving a 1D ribbon by weak Ag ··· Ag interactions. Complex 3 consists of a dinuclear silver(I) [Ag22‐2‐ap)(2‐ap)(bnb)] moiety and a lattice water molecule, forming a 3D network via a number of hydrogen‐bonding interactions such as N–H ··· O, N–H ··· N and C–H ··· O hydrogen bond and other weak interactions such Ag ··· Ag, Ag ··· N, N ··· O as well as O ··· O interaction. Similar to 3 , the asymmetric unit of 4 consists of one dinuclear silver(I) [Ag22‐pyc)2(2‐apy)2] moiety and half lattice water molecule, further generating a tetranuclear silver(I) {[Ag22‐pyc)2(2‐apy)2]2 · H2O} moiety. These moieties construct a 3D supramolecular network structure of 4 through N–H ··· O, O–H ··· O and C–H ··· O hydrogen bonds as well as other weak interactions such as Ag ··· O and N ··· O interactions.  相似文献   

5.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

6.
The title coordination polymer, {[Ag(C8H7O5)]·H2O}n, is built from Ag+ cations and singly protonated dehydronorcantharidin (SP‐DNC) anions, with a distorted trigonal‐planar geometry at the metal centre. The coordination number of AgI is three (with one Ag—π bond and two Ag—O bonds, one from each of three different SP‐DNC ligands), if only formal Ag–ligand bonds are considered, but can be regarded as five if longer weak Ag...O interactions are also included. The two‐dimensional corrugated‐sheet coordination polymer forms a non‐interpenetrating framework with (4.82) topology. Disordered water molecules are sandwiched between the sheets.  相似文献   

7.
Three structurally related flexible bis(imidazole) ligands reacted with Co(NO3)2 · 6H2O and succinic acid (L1) to yield three new metal‐organic frameworks {[Co(L1)(L2)] · (H2O)}n ( 1 ) [L2 = 2‐bis(imidazol‐1‐yl)ethane], {[Co(L1)(L3)](H2O)}n ( 2 ) [L3 = 1,4‐bis(imidazol‐1‐yl) butane], and {[Co(L1)(L4)] · (H2O)}n ( 3 ) [L4 = 1,4‐bis(2‐methyl‐imidazol‐1‐yl)butane], respectively. These complexes were synthesized under solvothermal conditions and characterized by elemental analysis, IR spectroscopy, single‐crystal and powder X‐ray diffraction, as well as thermal analyses. Interestingly, the ligands in these complexes exhibit different conformations and further cause three different configurations. Complex 1 shows a three‐dimensional (3D) framework, which is connected by two‐dimensional (2D) layer structures through hydrogen bonds. Complex 2 is a diamond structure with threefold interpenetration. Complex 3 is a 3D framework linked by hydrogen bonds like complex 1 .  相似文献   

8.
Three silver(I) coordination polymers namely, [Ag4(L1)2(1, 4‐ndc)2]n ( 1 ) {[Ag(L2)] · (1, 4‐Hndc) · H2O}n ( 2 ), and {[Ag(L3)(H2O)] · (1, 4‐Hndc)}n ( 3 ) [L1 = 1, 3‐bis(benzimidazol‐1‐ylmethyl)benzene, 1, 4‐H2ndc = 1, 4‐naphthalenedicarboxylic acid, L2 = 1, 3‐bis(5, 6‐dimethylbenzimidazole‐1‐ylmethyl)benzene, L3 = 1, 4‐bis(5, 6‐dimethylbenzimidazole)butane], were hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR spectroscopy, thermogravimetric and XRPD analysis. Complex 1 displays a 1D tube‐like chain, which is packed into a 3D supramolecular network by π–π stacking interactions. Complex 2 features an infinite 1D linear chain. Complex 3 contains a 1D wave‐like chain, which is extended into a 3D supramolecular network through O–H ··· O hydrogen bonding interactions. Moreover, these coordination polymers exhibit catalytic properties for degradation of methyl orange in Fenton‐like processes.  相似文献   

9.
By reaction of CuCl2 with H4btc (H4btc = 1,2,4,5‐benzenetetracarboxylic acid) in mixed N,N‐dimethylformamide (DMF) and methanol solution, a new two‐dimensional (2‐D) copper(II) complex [Cu(btc)0.5(DMF)]n ( 1 ) based on the paddlewheel‐like [Cu2(‐CO2)4(DMF)2] building blocks has been synthesized, which is different from those previous Cu‐btc(II) coordination polymers obtained in water medium. Four carboxylate groups of (btc)4? anion in 1 consistently exhibit bidentate bridging coordination mode, affording an unusual coordination mode of (btc)4?. Further analysis indicates C–H···π weak interactions are the primary driving forces to assemble the 2‐D layers of 1 into a 3‐D packing structure.  相似文献   

10.
采用水热法设计合成了两个新型三维超分子化合物H2L·H2O (1)和[Ag(bpy)2]·HL·H2O (2) (其中bpy=2,2'-联吡啶, H2L=2,4′-二羧基二苯甲酮),晶体结构分析表明,它们均是通过氢键采用不同的连接方式拓展而成。其中,化合物1 是2,4′-二羧基二苯甲酮和水分子通过O–H···O氢键形成的一维梯状链扩展构筑的三维超分子体系;化合物2 则是2,4′-二羧基二苯甲酮和水分子通过两种氢键形成含有一维隧道的三维超分子体系。有趣的是,[Ag(bpy)2]+ 阳离子通过π–π 堆积和弱的Ag···Ag相互作用连在一起,进而以客体形式填充其中。荧光性质研究表明,由于存在bpy的螯合与堆积效应,化合物2相比配体和化合物1,其荧光发射峰发生红移。  相似文献   

11.
Two new metal‐organic coordination polymers[Eu(m‐BDC)1.5(MOPIP) · 1/2H2O]n ( 1 ) and [Co(m‐BDC)(MOPIP)2 · 2H2O]n ( 2 ) [m‐H2BDC = benzene‐1, 3‐dicarboxylic acid, MOPIP = 2‐(4‐methoxyphenyl)‐1H‐imidazo[4, 5‐f] 1 , 10 phenanthroline] were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. The coordination polymers crystallize in monoclinic space group P21/m for 1 ( 2 : P21/n), with a = 9.779(2), b = 18.242(4), c = 17.146(3) Å, β = 106.41(3)° for 1 , and with a = 8.2153(16), b = 27.974(6), c = 17.974(4) Å, β = 100.40(3)° for 2 . The crystal structure of complex 1 is a zipper‐like chain of octacoordinate Eu3+ ions, in which Eu3+ ions are bridged in two coordination modes by m‐BDC2+ ligands and decorated by MOPIP ligands. The molecular structure of complex 2 consists of a hexacoordinte Co2+ atom, which generates a slightly distorted octahedral arrangement, and assembles into three‐dimensional supramolecular nets by π ··· π stacking interactions. Additionally, these two compounds show strong fluorescence in the solid state at room temperature. Natural bond orbital (NBO) analysis is performed by using the NBO method built in Gaussian 03 Program. The calculation results show a weak covalent interaction between the coordinated atoms and metal ions.  相似文献   

12.
Sulfathiazole reacts with [Ph3PAu(CH3COO)] in benzene and with Ag(CH3COO) in methanol giving [(sulfathiazolato)AuPPh3] ( 1 ) and {[Ag(sulfathiazolato)]2}n ( 2 ). While the lattice of 1 contains single molecules with linear N–Au–P bonds, compound 2 performs a polymeric, one‐dimensional assembling of [Ag(sulfathiazolato)]2 dimers linked through intermolecular Ag···O=S=O interactions along the crystallographic axis b. The silver atoms achieve a tetrahedral configuration through Ag–Ag contacts which measure 2.8427(4) Å, considerably shorter than the normal bonding distance of metallic silver.  相似文献   

13.
A series of new coordination polymers, namely, [Sr(H2EIDC)2(H2O)2]n ( 1 ),{[Pb(H2EIDC)2(H2O)](H2O)3}n ( 2 ), [Ag(H2EIDC)]n ( 3 ), and [Ba(H2EIDC)2(H2O)]n ( 4 ) (H2EIDC = 2‐ethyl‐1H‐imidazole‐4,5‐dicarboxylate), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, X‐ray diffraction and thermogravimetric analyses. Complex 1 is a 2D infinite gridlike (4,4)topological layer structure. Complex 2 is a 2D corrugated layer constructed by PbII atoms and H2EIDC anions. Complex 3 is a 2D corrugated sheet consisting of 1D chains linked by short Ag ··· Ag interactions, and the three complexes are extended into 3D supramolecular structures by weak intermolecular forces such as hydrogen bonds and π–π stacking interactions. Complex 4 exhibits a 3D framework with 1D channels. Furthermore, the luminescent properties of complexes 1 , 2 , and 3 are also investigated.  相似文献   

14.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   

15.
Two new cobalt(II) coordination polymers, {[Co(L1)(tbta)] · 0.8H2O}n ( 1 ) and {[Co(L2)(tbta)] · H2O}n ( 2 ) [L1 = 1,1′‐(1,3‐propanediyl)bis(2‐methylbenzimidazole), L2 = 1,2‐bis(2‐methylbenzimidazole‐1‐ylmethyl)benzene, H2tbta = tetrabromoterephthalic acid] were obtained under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction methods, IR spectroscopy, TGA, and elemental analysis. The cobalt atoms present similar environments with tetrahedral arrangements in 1 and 2 . The two complexes show a 2D (4,4) coordination network with sql topology. Compound 2 is further extended into a rare 3 , 3 , 4T3 three‐dimensional supramolecular framework by weak C–H ··· O hydrogen bonding interactions. The fluorescence and catalytic properties of the complexes for the degradation of the congo red azo dye in a Fenton‐like process were investigated.  相似文献   

16.
Three copper(II) coordination polymers [Cu(mbtz)2(NCS)2]n ( 1 ), [Cu(mbtz)2Cl2]n ( 2 ) and [Cu(mbtz)(btec)0.5]n ( 3 ) (mbtz=1,3‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, btec=1,2,4,5‐benzenetetracarboxylate) were synthesized. In 1 and 2 , two mbtz ligands are wrapped around each other and are held together by Cu(II) atoms to form one‐dimensional double chain. In 3 , each btec ligand connects four Cu(II) atoms through its four carboxylate groups, resulting in a planar two‐dimensional [Cu(btec)0.5]n network. The Cu(II) atoms are further coordinated mbtz ligands to fulfil their coordination geometry and construct new [Cu(btec)0.5(mbtz)]n network. 2 and 3 further form the three‐dimensional network through the π···π stacking interactions between the mbtz ligands. The thermal stabilities of 1 , 2 and 3 were measured.  相似文献   

17.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

18.
Three copper(II) coordination polymers (CuCPs), namely, [Cu0.5(1,4‐bib)(SO4)0.5]n ( 1 ), {[Cu(1,3‐bib)2(H2O)] · SO4 · H2O}n ( 2 ), and [Cu(bpz)(SO4)0.5]n ( 3 ), were assembled from the reaction of three N‐donors [1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and Hbpz = 3‐(2‐pyridyl)pyrazole] with copper sulfate under hydrothermal conditions. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Structure analyses reveal that complex 1 is a 3D 6‐connected {412 · 63}‐ pcu net, complex 2 is a fourfold 3D 4‐connected 66‐ dia net, whereas complex 3 is a 1D snake‐like chain, which further expanded into 3D supramolecular architectures with the help of C–H ··· O hydrogen bonds. Moreover, the photocatalytic tests demonstrate that the obtained CuCPs are photocatalysts in the degradation of MB with the efficiency is 86.4 % for 1 , 75.3 % for 2 , and 91.3 % for 3 after 2 h, respectively.  相似文献   

19.
Four coordination polymers, [Cu(NIPH)(Bim)2]n ( 1 ), [Co(NIPH)(Bim)2]n ( 2 ), [Zn(NIPH)(Bim)]n ( 3 ), and [Cd(NIPH)(Bim)(H2O)]n ( 4 ) (NIPH = 5‐nitroisophthalate and Bim = benzimidazole) have been synthesized and characterized by elemental analysis, IR, TGA and single‐crystal X‐ray diffraction. The crystal structural analyses reveal that 1 and 2 are composed of zig‐zag chains and straight line chains, respectively. 3 and 4 are constructed by double‐stranded loop‐like chains. All these chain‐like structures are finally packed into three‐dimensional networks through hydrogen bonds. Thermogravimetic analyses (TGA) of 1 – 4 and temperature‐dependent magnetic susceptibilities of 1 have been performed.  相似文献   

20.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号