首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the uniaxial and biaxial stretching and subsequent solution annealing of extrusion‐cast polyamide‐11 films on the crystalline structure and morphology was investigated with differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), Fourier transform infrared spectroscopy, and small‐angle X‐ray scattering (SAXS). The extrusion‐cast polyamide‐11 films exhibited elevations in the glass‐transition and cold‐crystallization temperatures with a constant crystallinity and a constant melting point during aging under room conditions (20–26 °C and 20–31% relative humidity). WAXD and SAXS suggested that chain‐folded lamellae of coexisting α‐ and β‐crystals existed in all the stretched polyamide‐11 films. WAXD pole figures indicated that hydrogen bonds in the hydrogen‐bonded sheets of these two crystalline forms apparently formed between antiparallel chain molecules. The unit cell parameters [a = 9.52 Å, b = 5.35 Å, c = 14.90 Å (chain axis), α = 48.5°, β = 90°, and γ = 74.7° for a triclinic α form and a = 9.52 Å, b = 14.90 Å (chain axis), c = 4.00 Å, α = 90°, β = 67.5°, and γ = 90° for a monoclinic β form] for polyamide‐11 crystals were proposed according to the results of this study and the results of previous investigators. The unit cell parameters of the stretched extrusion‐cast polyamide‐11 films varied, depending on the stretching conditions (the stretch temperature and stretch ratio). As the stretch temperature and stretch ratio were increased, the crystal became more similar to the form described previously and was accompanied by an increase in the long spacing of crystalline lamellae. Annealing the stretched films in a boiling 20% formic acid solution made slightly more perfected crystals. The hydrogen‐bonding α(010) + β(002) planes, which are nearly parallel to both amide group planes and zigzag methylene sequence planes of the biaxially stretched films were found to be parallel to the film surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2624–2640, 2002  相似文献   

2.
Interactions among annealed spherical polyelectrolyte brushes (SPB) in concentrated aqueous dispersion under the effect of concentration, pH, and salt concentration are investigated by means of rheology, and small angle X‐ray scattering (SAXS). SPB consist of a solid polystyrene (PS) core and linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. Rheological investigation demonstrates that the viscosity, the storage modulus G′ and the loss modulus G″ of SPB dispersion increase significantly upon increasing the SPB concentration and pH value which reflects the enhanced interactions among SPB. At high pH, a further increase in pH from 8 to 13 has almost no impact on the rheological properties and SAXS curves, while a “Uniform Shell Model” can fit the SAXS data very well probably due to the uniform filling of polyelectrolyte chains among SPB. When increasing the salt concentration from 10?5 to 10?3 M, the so‐called “polyelectrolyte peak” appears at middle to high q range in SAXS curves which means the overlapped polyelectrolyte chains are associated under the bridging effect of counterions, which disappears at higher salt concentration due to the screening effect of further added salts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 405–413  相似文献   

3.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

4.
Concentration dependent morphology of 3‐armed poly(ethylene glycol)‐b‐poly(ε‐caprolactone) copolymer aggregates in aqueous system was investigated by atomic force microscopy (AFM). The AFM results show that, at a low concentration, 4 × 10?5 g/mL, spherical micelles occur, and unmicellized molecules are not distributed homogeneously in the copolymer aqueous solution. Unequal outspread clusters composed of wormlike aggregates are formed at a moderate copolymer concentration, 4 × 10?4 g/mL, those wormlike aggregates are orderly packed in the clusters. At a high concentration of 0.05 g/mL, the copolymer aqueous system is indeed a gel at room temperature, outspread clusters of wormlike aggregates join together to forma network structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1412–1418, 2008  相似文献   

5.
A new mercury iodide complex of dppf, [HgI2(dppf)] (adduct 1 , dppf = 1,1‐bis(diphenylphosphino)ferrocene) was prepared and characterized. Single crystal X‐ray diffraction analysis established that the compound crystallizes in the monoclinic system, space group C2c, with a = 34.992(3), b = 10.236(5), c = 18.765(4) Å, β = 99.410(2)°, Z = 8, V = 6631.2(9) Å3. The coordination about the mercury atom is tetrahedral with two equivalent Hg–I and Hg–P bonds. Dppf functions as a chelating ligand. The nonlinear optical (NLO) properties were studied with an 8 ns‐pulsed laser at 532 nm. Its optical responses to the incident light exhibit weak optical absorptive and strong refractive effects, with n2 = 6.86 × 10–18 m2 · W–1 in a 2.48 × 10–4 mol · dm–3 DMF solution.  相似文献   

6.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

7.
A lead 2,6‐dihydroxybenzoate of the formula Pb(C14H10O8) ( I ) has been synthesized and characterized by X‐ray crystallography and spectroscopic techniques. (crystal data: monoclinic, space group = Cc (no. 9), a = 11.2155(2), b = 9.2942(2), c = 13.5112(3) Å, β = 96.510(1)°, V = 1399.31(5) Å3, Z = 4). This is the first three‐dimensional metal dihydroxybenzoate structure, comprising 3,6‐connected periodic net and having channels with the dimensions 3.8 × 3.8Å and 10.8 × 3.8Å. The coordination of the PbO8 polyhedron is holodirected and the electron lone pair of the lead is, therefore, not manifested in I . It exhibits photoluminescence in the violet, green and red when excited at 240, 390 and 525 nm, respectively.  相似文献   

8.
Measurements of the thermal expansion coefficients (TECs) of cellulose crystals in the lateral direction are reported. Oriented films of highly crystalline cellulose Iβ and IIII were prepared and then investigated with X‐ray diffraction at specific temperatures from room temperature to 250 °C during the heating process. Cellulose Iβ underwent a transition into the high‐temperature phase with the temperature increasing above 220–230 °C; cellulose IIII was transformed into cellulose Iβ when the sample was heated above 200 °C. Therefore, the TECs of Iβ and IIII below 200 °C were measured. For cellulose Iβ, the TEC of the a axis increased linearly from room temperature at αa = 4.3 × 10?5 °C?1 to 200 °C at αa = 17.0 × 10?5 °C?1, but the TEC of the b axis was constant at αb = 0.5 × 10?5 °C?1. Like cellulose Iβ, cellulose IIII also showed an anisotropic thermal expansion in the lateral direction. The TECs of the a and b axes were αa = 7.6 × 10?5 °C?1 and αb = 0.8 × 10?5 °C?1. The anisotropic thermal expansion behaviors in the lateral direction for Iβ and IIII were closely related to the intermolecular hydrogen‐bonding systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1095–1102, 2002  相似文献   

9.
Highly crystalline samples of cellulose triacetate I (CTA I) were prepared from highly crystalline algal cellulose by heterogeneous acetylation. X‐ray diffraction of the prepared samples was carried out in a helium atmosphere at temperatures ranging from 20 to 250 °C. Changes in seven d‐spacings were observed with increasing temperature due to thermal expansion of the CTA I crystals. Unit cell parameters at specific temperatures were determined from these d‐spacings by the least squares method, and then thermal expansion coefficients (TECs) were calculated. The linear TECs of the a, b, and c axes were αa = 19.3 × 10?5 °C?1, αb = 0.3 × 10?5 °C?1 (T < 130 °C), αb = ?2.5 × 10?5 °C?1 (T > 130 °C), and αc = ?1.9 × 10?5 °C?1, respectively. The volume TEC was β = 15.6 × 10?5 °C?1, which is about 1.4 and 2.2 times greater than that of cellulose Iβ and cellulose IIII, respectively. This large thermal expansion could occur because no hydrogen bonding exists in CTA I. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 517–523, 2009  相似文献   

10.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

11.
Three ternary rare earth [NdIII ( 1 ), SmIII ( 2 ) and YIII ( 3 )] complexes based on 3‐[(4,6‐dimethyl‐2‐pyrimidinyl)thio]‐propanoic acid (HL) and 1,10‐phenanthroline (Phen) were synthesized and characterized by IR and UV/Vis spectroscopy, TGA, and single‐crystal X‐ray diffraction. The crystal structures showed that complexes 1 – 3 contain dinuclear rare earth units bridged by four propionate groups and are of general formula [REL3(Phen)]2 · nH2O (for 1 and 2 : n = 2; for 3 : n = 0). All rare earth ions are nine‐coordinate with distorted mono‐capped square antiprismatic coordination polyhedra. Complex 1 crystallizes in the monoclinic system, space group P21/c with a = 16.241(7) Å, b = 16.095(7) Å, c = 19.169(6) Å, β = 121.48(2)°. Complex 2 crystallizes in the monoclinic system, space group P21/c with a = 16.187(5) Å, b = 16.045(4) Å, c = 19.001(4) Å, β = 120.956(18)°. Complex 3 crystallizes in the triclinic system, space group P1 with a = 11.390(6) Å, b = 13.636(6) Å, c = 15.958(7) Å, α = 72.310(17)°, β = 77.548(15)°, γ = 78.288(16)°. The antioxidant activity test shows that all complexes own higher antioxidant activity than free ligands.  相似文献   

12.
TEM micrographs show that the PA grafts of PS‐g‐PA6 graft copolymers, which are obtained directly by extracting homo‐PA6 out from the homo‐PA6/PS‐g‐PA6 blends, are in the form of wormlike structure. The wormlike PA6 domains can shrink into droplets after annealing at 250 °C for 15 min. The diameter of the droplet determined by TEM and SAXS is in the range of 50–60 nm. This article reports on a unique crystallization behavior of the PA6 grafts in PS‐g‐PA6 graft copolymers. In a DSC cooling scan, PA6 grafts do not crystallize from the melt with a cooling rate of 10 °C/min. However, there is a cold crystallization peak around 65 °C in the subsequent heating scan. This cold crystallization phenomenon, which has not yet been reported in the literature till now, follows well the homogeneous nucleation mechanism and is depressed at relatively slow cooling rates (2 °C/min) or even completely eliminated after annealing within a specific temperature range. It may be caused by the slow diffusion or transport rate of the less flexible PA6 grafts to the crystal fronts when crystallization takes place around its glass transition temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 65–73, 2010  相似文献   

13.
X‐ray structure analysis was carried out in order to clarify the crystal structure and structural disorder of poly‐(p‐phenylenebenzobisthiazole). Two molecular chains pass through an oblique unit cell with parameters a = 11.60 Å, b = 3.588 Å, γ = 92.0° and the plane group p2. The angle between the phenylene and benzobisthiazole rings was estimated as 20.5°. Poly‐(p‐phenylenebenzobisthiazole) includes the disorder with respect to the molecular height, because the first and third layer lines are diffuse streak. On the ac plane, the molecular heights are disordered by 1/2 because 102, 602, and 404 reflections can be observed. On the bc plane, the molecular heights are disordered by every 1/5 because the 015 reflection can be observed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 376–382, 2000  相似文献   

14.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

15.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

16.
Structure and Magnetic Properties of Bis{3‐amino‐1,2,4‐triazolium(1+)}pentafluoromanganate(III): (3‐atriazH)2[MnF5] The crystal structure of (3‐atriazH)2[MnF5], space group P1, Z = 4, a = 8.007(1) Å, b = 11.390(1) Å, c = 12.788(1) Å, α = 85.19(1)°, β = 71.81(1)°, γ = 73.87(1)°, R = 0.034, is built by octahedral trans‐chain anions [MnF5]2– separated by the mono‐protonated organic amine cations. The [MnF6] octahedra are strongly elongated along the chain axis (<Mn–Fax> 2.135 Å, <Mn–Feq> 1.842 Å), mainly due to the Jahn‐Teller effect, the chains are kinked with an average bridge angle Mn–F–Mn = 139.3°. Below 66 K the compound shows 1D‐antiferromagnetism with an exchange energy of J/k = –10.8 K. 3D ordering is observed at TN = 9.0 K. In spite of the large inter‐chain separation of 8.2 Å a remarkable inter‐chain interaction with |J′/J| = 1.3 · 10–5 is observed, mediated probably by H‐bonds. That as well as the less favourable D/J ratio of 0.25 excludes the existence of a Haldene phase possible for Mn3+ (S = 2).  相似文献   

17.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

18.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

19.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

20.
The binary thorium tritelluride, α‐ThTe3, was synthesized by solid‐state methods at 1223 K. From a single‐crystal X‐ray diffraction study the material crystallizes in the TiS3 structure type with two formula units in space group C22hP21/m of the monoclinic system in a cell with lattice constants a = 6.1730 (4) Å, b = 4.3625(3) Å, c = 10.4161(6) Å, and β = 97.756(3)° (at 100 K). The asymmetric unit of this compound comprises one Th atom and three Te atoms each with site symmetry m. Each Th atom is coordinated to eight Te atoms in a bicapped trigonal‐pyramidal arrangement. Th–Te distances range from 3.1708(4) Å to 3.2496(6) Å. The structure features a Te–Te interaction 2.7631(8) Å in length, which is typical for a Te–Te single bond. Thus α‐ThTe3 may be charge balanced and formulated as Th4+Te2–Te22–.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号