共查询到20条相似文献,搜索用时 15 毫秒
1.
The simultaneous promotion in mechanical and electrical properties of rigid polyurethane (RPU) is an important task for expanding potential application. In this work, carbon fibers (CFs) reinforced RPU composites were prepared with the goal of improving mechanical and electrical properties. Metallized CFs meet our performance requirements and can be easily achieved via electrodeposition. However, the weak bonding strength in fiber‐metal‐RPU interface restricts their application. Inspired by the reducibility and wonderful adhesion of dopamine (DA), we proposed a new and efficient electrochemical method to fabricate metallized CFs, where DA polymerization was simultaneously integrated coupled with the reduction of metal ions (Ni2+). The characterization results helped us to gain insight about the reaction mechanism, which was never reported as far as we know. Compared with pure RPU, the tensile, interlaminar shear and impact strength of polydopamine (PDA)‐nickel (Ni) modified CFs/RPU composites were improved by 11.2%, 21.0%, and 78.0%, respectively, which attributed to the strong interfacial adhesion, including mechanical interlocking and chemical crosslinking between treated CFs and RPU. In addition, the PDA‐Ni surface treatment method also affected the dispersion of short CFs in the RPU, which increased the possibility of conductor contact and reduced insulator between fibers networks, resulting in higher electrical conductivity. 相似文献
2.
Papia Haque Ian A. Barker Andrew Parsons Kristofer J. Thurecht Ifty Ahmed Gavin S. Walker Christopher D. Rudd Derek J. Irvine 《Journal of polymer science. Part A, Polymer chemistry》2010,48(14):3082-3094
Eight compatibilizing agents were studied to investigate their effect on the quality of the interface between a phosphate glass fiber and a poly(lactic acid) (PLA) matrix. After application of the agents via dip‐coating, the fibers were Soxhlet extracted to remove any unreacted compatibilizer. To assess the interface quality, single fiber tensile tests of treated fibers and interfacial shear strengths (IFSS) of single fiber composites (SFC) were assessed. Of the agents tested, Glycerol‐2‐phosphate disodium pentahydrate (GP) and low molecular weight PLA with a sodium salt terminal group (PLA‐Na) showed the highest IFSS values, which were significantly higher than those of the control. Oligomeric PLA with a carboxylic acid end group and alendronate sodium trihydrate also showed an improvement over the control fibers. The hydrolytic degradation of these single fiber composites was studied over 7 days in water at 37 °C and a significant decrease in IFSS was observed in all cases, with the treated samples dropping to the level of the control. TGA and XPS analysis of the sized fibers showed that GP and PLA‐Na had been applied successfully to the fiber surface. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3082–3094, 2010 相似文献
3.
《先进技术聚合物》2018,29(4):1287-1293
The surface treatment of ultra‐high molecular weight polyethylene fiber using potassium permanganate and the mechanical properties of its epoxy composites were studied. After treatment, many changes were happened in the fiber surface: more O‐containing groups (―OH, ―C═O, and ―C―O groups), drastically decreased contact angles with water and ethylene glycol, slightly increased melting point and crystallinity, and formed cracks. Different contents (0.1–0.5 wt%) ultra‐high molecular weight polyethylene fibers/epoxy composites were prepared. The results indicated that the surface treatment decreased the tensile strength of epoxy composites, but increased the bending strength. When the fiber content was 0.3 wt%, the above properties reached the maximum. At the same fiber content, the interlaminar shear strength of the composites was increased by 26.6% up to the as‐received fiber composites. Dynamic mechanical analysis of the composites suggested the storage modulus and tanδ were decreased due to the surface treatment. Fractured surface analysis confirmed that the potassium permanganate treatment was effective in improving the interface interaction. 相似文献
4.
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
S. Saikrasun S. Bualek‐Limcharoen S. Kohjiya K. Urayama 《Journal of Polymer Science.Polymer Physics》2005,43(2):135-144
The anisotropic mechanical properties of the thermoplastic elastomer (TPE) in situ reinforced with thermotropic liquid‐crystalline polymer (TLCP) fibers were investigated by uniaxial, strip‐biaxial, and equibiaxial tensile measurements. The in situ composite sheets were prepared from an immiscible blend of a TLCP, Rodrun LC3000, and a TPE, styrene‐(ethylene butylene)‐styrene (SEBS) triblock copolymer, by a melt extrusion process. The uniaxial orientation of the TLCP fibers in the TPE matrix generated during processing yielded a significant mechanical anisotropy in the composites. The biaxial tensile measurements clearly demonstrated the anisotropic mechanical properties of the composites: The modulus in the direction parallel to the machine direction (MD) was considerably higher than that in the transverse direction (TD), even at large deformations; in equibiaxial stretching, the yield strain in the MD was smaller than that in the TD; the composite containing 10 wt % of TLCP exhibited the highest mechanical anisotropy among the composites, with 0–30 wt % TLCP. The latter result was in accord with the SEM observation that the composite with 10 wt % of TLCP possessed the best fibrillar morphology and the highest degree of uniaxial orientation of the TLCP fibers. The yield strains in uni‐ and biaxial elongation for the composite containing 10 wt % of TLCP were almost the same as those for the neat styrene‐ethylene butylene‐styrene. The TLCP phase with good fibrillation did not appreciably alter the original yielding characteristics of the elastomer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 135–144, 2005 相似文献
6.
7.
The addition of clay on the mechanical properties of surface‐treated CF‐filled PA66 composites 下载免费PDF全文
Polyamide 66 (PA66) composites filled with clay and carbon fiber (CF) were prepared by twin‐screw extruder in order to study the influence of nanoparticle reinforcing effect on the mechanical behavior of the PA66 composites (CF/PA66). The mechanical property tests of the composites with and without clay were performed, and the fracture surface morphology was analyzed. The results show that the fracture surface area of the clay‐filled CF/PA66 composite was far smoother than that of the CF/PA66 composite, and there formed a tense interface on the CF surface after the addition of clay. The tensile and flexural strength of CF/PA66 composites with clay was improved. The impact strength decreased because of the high interfacial adhesion. In conclusion, the addition of clay favored the improvement of the higher interface strength and so had good effect on improving the tensile and flexural properties of the composites. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
8.
《先进技术聚合物》2018,29(1):52-60
Polyethylene terephthalate (PET) was melt blended with linear low density polyethylene (LLDPE) and subsequently compounded with glass fibers (GF) as reinforcements at percentages ranging from 15 to 45 wt% of LLDPE and 5 to 30 wt% of GF. Thermal, morphological, and mechanical properties of the prepared composites were investigated. It was found that compounding PET/LLDPE blends with GF would be beneficial in producing composites that are thermally stable with good mechanical properties. For example, the impact strength of the composites containing 85/15 wt% (PET/LLDPE) at relatively high loading of GF, ie, from 15 to 30 wt%, was higher than that of the GF‐reinforced neat PET. When increasing the percentage of LLDPE in the composites, the impact strength increased with increasing GF content, and this was also better than that of GF‐reinforced PET whose impact strength drastically decreased upon increasing the GF%. The improvement in mechanical properties of the composite, we suggest, should be correlated with the morphologies of the composites where the visualized interface adhesion tended to be better at higher loadings of both LLDPE and GF. 相似文献
9.
David M. Dean Alexander A. Marchione Ludwig Rebenfeld Richard A. Register 《先进技术聚合物》1999,10(11):655-668
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
10.
The effect of coupling agents on the interfacial properties of wood‐fiber–reinforced polyimide composites 下载免费PDF全文
Wood‐fiber–reinforced polyimide (PI) has been widely used in many engineering fields because of its high specific strength and stiffness. However, PI does not adhere well with wood fibers because it has a low free surface energy. In addition, high viscosity in the melted phase causes poor impregnation. In this study, surface treatment methods, ie, coupling agents with plasma treatment on wood fibers, were applied to increase the interfacial strength between the wood fibers and the PI matrix. The modified wood fiber surfaces were analyzed by X‐ray photoelectron spectroscopy and scanning electron microscopy. To analyze the effectiveness of the surface treatment method, the interlaminar shear strength (ILSS) was measured using the 3‐point bending test. From the test results, the ILSS of the specimens treated with the silane coupling agent after the plasma treatment increased by 48.7% compared with those of the untreated specimens. 相似文献
11.
A silane coupling agent, γ‐methacryloxypropyltrimethoxysilane, for the surface modification of glass fibers was varied between 0.1 and 0.8 wt %. To understand the role of interfacial adhesion of glass fiber/unsaturated polyester composites, contact angles of the silane‐treated glass fibers were measured by the wicking method on the basis of the modified Washburn equation with deionized water, diiodomethane, and ethylene glycol as testing liquids. As a result, silane‐treated glass fibers led to increased surface free energy, mainly because of their increased specific or polar component. The mechanical interfacial behaviors based on the interlaminar shear strength (ILSS) of the composites determined by short‐beam tests and the critical stress‐intensity factor (KIC) were also improved in the case of silane‐treated composites. The surface free energy and the mechanical interfacial properties especially showed the maximum value in the presence of 0.4 wt % silane coupling agent. It revealed that the increase of a specific component of the surface free energy or hydrogen bonding between the glass fibers and the coupling agents plays an important role in improving the degree of adhesion at interfaces in a composite system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 55–62, 2003 相似文献
12.
Pauline Carion Ahmad Ibrahim Xavier Allonas Cline Croutx‐Barghorn Gildas L'Hostis 《Journal of polymer science. Part A, Polymer chemistry》2019,57(8):898-906
Free‐radical photopolymerization is scarcely used for the manufacturing of fiber‐reinforced polymers. The main issue relies on the penetration depth of light which affects the conversion degree when photopolymerizing thick samples. Consequently, this could lead to inhomogeneous polymer properties. The ability of acylphosphine oxides to photobleach under near UV irradiation makes them of great interest for the curing of thick samples. Therefore, the influence of (2,4,6‐trimethylbenzoyl) phosphine oxide on the curing of composites under LED is investigated. Although that a frontal photopolymerization process can be evidenced, it was found that full photobleaching is hardly obtained at high concentration of photoinitiator. Six layers laminates made of unidirectional fiber glass and unsaturated polyester resin were prepared. The existence of an optimal range of concentration for which the conversion of the resin is the most homogeneous throughout its thickness was pointed out, a fact that is confirmed by dynamic mechanical analysis. Interestingly, this effect is reflected in the shrinkage of the resin as shown by direct measurements or deflection experiments. Mechanical analysis was undertaken whose results correlate well with the aforementioned study, demonstrating the occurrence of a balance between the concentration of photoinitiator and the mechanical properties of the samples. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 898–906 相似文献
13.
J. Ma. García‐Martínez O. Laguna S. Areso E. P. Collar 《Journal of Polymer Science.Polymer Physics》2002,40(13):1371-1382
This article reports on the interfacial modifications induced by different amounts of a succinyl‐fluorescein grafted atactic polypropylene (a‐PP‐SF) as a truly interfacial agent in polypropylene/talc composite materials. The a‐PP‐SF used, which contains 4% grafts, was previously obtained in our laboratory by chemical modification of a byproduct from industrial polymerization reactors. Thermal and mechanical analyses of composites, performed under dynamic conditions, led to the correlation of parameters at the microscopic scale with others at the macroscopic scale. Thus, the interfacial effect caused by different amounts of a‐PP‐SF in the composite can be concluded by observations made at either scale. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1371–1382, 2002 相似文献
14.
15.
The thermoplastic composites based on poly(butylene terephthalate) (PBT) and recycled carbon fiber (RCF) were prepared through simple melt compounding by a twin‐screw extruder. An effective approach was utilized to clean and treat the RCF surface with a concentrated solution of nitric acid and then a solution of diglycidyl ether of bisphenol A as macromolecular coupling agent so as to improve the interfacial adhesion between the RCF and PBT matrix. As a result, the reinforcing potential of the RCF was enhanced substantially, and the mechanical properties, heat distortion temperature, and thermal stability of PBT could be significantly improved by incorporating this surface‐treated RCF. The morphologies of fracture surfaces indicated that the RCF achieved a homogeneous dispersion in the PBT matrix due to a good interfacial interaction between fiber and PBT. The investigations on the crystallization behaviors and kinetics demonstrated that the RCF acted as a nucleation agent for the crystallization of PBT, and the crystallization rate and nucleation density of PBT were increased remarkably due to the heterogeneous nucleating effect of RCF in the matrix. These features may be advantageous for the enhancement of mechanical properties, heat resistance, and processability of PBT‐based composites. This study may provide a design guide for carbon fiber‐reinforced PBT composites with a great potential as well as a low cost for industrial and civil applications. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Basma Hasiaoui Ahmad Ibrahim Gildas L'Hostis Karine Gautier Xavier Allonas Cline Croutx‐Barghorn Bernard Durand Fabrice Laurent 《先进技术聚合物》2019,30(4):902-909
Glass–fiber‐reinforced polymers were manufactured either through a room temperature thermal curing or under ultraviolet (UV) light from a LED. The thermal system yields high performances when a post‐curing process at 65°C is applied. The photochemical curing leads to a composite in a faster timescale, albeit at the extent of the mechanical properties. It is found that in this case, impregnation and vacuum steps are too fast to allow a good wetting of the fibers, thereby leading to mechanical weaknesses and larger void volume. However, when applying longer vacuum and impregnation steps, the mechanical properties of the photochemically cured sample match the best thermally cured one. As a conclusion, it is shown that photochemical curing of glass–fiber‐reinforced polymer can lead to high performance composite provided that the preparation steps are well controlled. 相似文献
17.
Molecular composites were prepared from several types of ionically modified, poly(p‐phenylene terephthalamide) (PPTA) dispersed in a poly(4‐vinylpyridine) matrix. Optical clarity tests indicated that the component polymers of the composite were miscible, at least at low concentrations of the rodlike reinforcement. In composites containing ionic PPTA, where ionic sulfonate groups were attached as side groups either to PPTA chains or to PPTA anion chains, the glass‐transition temperature (Tg) was increased by l0 °C or more, at 5 wt % reinforcement. At concentrations of 10–15 wt % of the ionic polymer, Tg values leveled off or decreased slightly. This suggested that some aggregation of the rigid‐rod molecules occurred. In composites containing ionic PPTA, where the ionic sulfonate groups were directly attached to the phenylene rings of PPTA chains, not only was Tg shifted significantly to higher temperatures, but the rubbery plateau modulus retained high values up to temperatures of 250 °C or above. Observed effects were considered to be the result of strong ionic interactions between the ionic reinforcement polymer and the polar matrix polymer. The possible effects of the counterion on Tg and the storage modulus are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1110–1117, 2002 相似文献
18.
《Surface and interface analysis : SIA》2018,50(2):133-137
The mechanical properties of SiO2 filler particles on carbon fibers have been under discussion for several decades; the diverse models, and the properties of the components relevant to retention, are critically reviewed in the first part of this study. In addition, to gain an insight into some possible combined effect of the carbon fiber/poly(methyl methacrylate) (CF/PMMA), interfacial adhesion strength and the tensile properties and dielectric strength of the hybrid composites were studied. Simple modified rules of mixtures are used to estimate the fiber efficiency factors for the strength and modulus of the hybrid composites. Except, with the increasing fraction of CFs in PMMA, the weld line area's elongation percent is decreased. Whereas for case of SiO2, the 10 wt% is the threshold for micro injection molded weld line tensile strength and dielectric strength turning from decrease trend to increase. Same as CF, elongation of micro weld line samples is in general lower than neat PMMA as well, due to the addition of SiO2 particles. 相似文献
19.
Preparation,characterization and properties of fiber reinforced composites using silicon‐containing hybrid polymers 下载免费PDF全文
A novel glass fiber reinforced composite was prepared by using silicon‐containing hybrid polymers, poly(methylhydrogen‐diethynylsilyene) (PMES) and poly(phenylethynyl‐silyloxide‐phenylborane) (APABS), as matrix resins. The curing behavior and rheological properties of the matrix resins were investigated by differential scanning calorimetry (DSC) and rotational rheometer. The dynamic viscoelastic properties, mechanical properties, and microstructures of the composites were studied by dynamic mechanical analysis (DMA), universal testing machine (UTM), and scanning electron microscopy (SEM), respectively. The results show that the composite can be well cured between 200 and 300 °C through reactive groups like Si‐H, N‐H, and C≡C units, the possible thermosetting mechanism is also proposed. The composites exhibit excellent mechanical properties with bending strength reach up to 261 and 178 MPa before and after heat‐treating, respectively. SEM analysis clearly indicates that crack in the matrix, matrix/fiber interface debonding, and fiber pull out are predominate failure mechanism for the composites which are heat‐treated in different temperatures. All these obtained results can give theoretical guiding reference for their further applications. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
In this article, short carbon fibers (CFs) reinforced rigid polyurethane (RPU) composites were prepared with the aim of improving both strength and toughness. A tannic acid (TA)‐nickel (Ni) composite coating was spontaneously co‐deposited onto CFs surface by a one‐step electrodeposition method to strengthen the interface bonding of the composites. The satisfactory mechanical properties of the composites were mainly attributed to the superior interfacial adhesion. On the one hand, TA could play a role in refining Ni grain during electrodeposition. On the other hand, the hydroxyl groups attached to composite coating, which were introduced by TA, could react with the RPU matrix to form chemical bonds. When the composites were under stress, the chemical bonds could effectively transfer the stress from matrix to the interface, while the refined Ni crystals could greatly increase the stress transfer path, and thus improve the strength and toughness of the material. Compared with pure RPU, the tensile strength, bending strength,interlaminar shear strength, and impact strength of TA‐Ni‐coated CFs/RPU composites were improved by 14.8%, 83.1%, 28.7%, and 121.4%, respectively. 相似文献