共查询到20条相似文献,搜索用时 0 毫秒
1.
Hsu‐Chiang Kuan Chen‐Chi M. Ma Wen‐Ping Chuang Hsun‐Yu Su 《Journal of Polymer Science.Polymer Physics》2005,43(1):1-12
A novel clay/waterborne polyurethane (WPU) nanocomposite was synthesized from polyurethane and saponite organoclay. The clay was organically modified with various swelling agents, the effect of which has been investigated. Hydrogen bonding between organic and inorganic materials was characterized with Fourier transform infrared (FTIR) spectroscopy. The results implied that hydrogen bonding increased when organoclay was added. Mechanical and wear property studies revealed that introducing clay into waterborne polyurethane will enhance the Young's modulus (from 56 to 126 MPa), the maximum stress (from 3.9 to 7.6 MPa), and the elongation at break (from 27.7 to 58.7%) of the nanocomposite by a factor of two, whereas the wear loss will be only one third of the neat waterborne polyurethane. Atomic force microscopy (AFM) was used to analyze the surface morphology of the nanocomposite. An AFM microphotograph showed that the surface of the clay/waterborne polyurethane nanocomposite was smoother when clay was added in waterborne polyurethane. The average roughness (Ra) decreased from 1.00 to 0.12. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1–12, 2005 相似文献
2.
The polymorphism behavior in nylon‐11/montmorillonite (MMT) nanocomposite was investigated by wide‐angle X‐ray diffraction (WAXD) and variable‐temperature infrared spectroscopy. The results of WAXD and IR confirmed the presence of the γ‐crystalline form of nylon‐11, which is induced and stabilized by MMT. However, the hydrogen bond in the nanocomposite and its temperature dependence also exhibited some differences from neat nylon‐11. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 253–259, 2004 相似文献
3.
Summary: Pyrolysis‐GC‐MS and TGA‐FT‐IR methods have been used to perform a comparative degradation study of polystyrene and a polystyrene–clay composite. An abnormally high yield of α‐methylstyrene has been detected for the composite. This and other differences in degradation products have been explained by enhanced intermolecular interaction of the grafted PS chains, forming a brush structure. A conceptual model of the process has been suggested.
4.
Yongtao Wu Mengge Xia Qingqing Fan Yan Zhang Hao Yu Meifang Zhu 《Journal of Polymer Science.Polymer Physics》2011,49(4):263-266
The interactions between organic and inorganic components in pregel solution for polyacrylamide (PAAm)/clay nanocomposite hydrogels (NC gels) and in prepared NC gels are investigated. Besides, a kind of self‐crosslinked PAAm gels with excellent mechanical properties is fabricated in the absence of any cross‐linking agents, the hydrogen bonding interactions among PAAm chains are acted as the cross‐linking force. It is revealed that the binding interactions of PAAm and clay in NC gels are owing to the noncovalent interactions between amide groups on PAAm chains and clay platelets, which afford the cross‐linking force for NC gels network formation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
5.
Bing Na Ruihua Lv Nana Tian Wenfei Xu Zhujun Li Qiang Fu 《Journal of Polymer Science.Polymer Physics》2009,47(9):898-902
The polymorphic transition (γ → α conversion) in a single nylon 6 filament under stretching has been explored for the first time by using micro‐FT‐IR spectroscopy. The content of γ‐form deceases with straining while the amount of α‐form gradually increases, suggesting γ → α conversion. A two‐step mechanism, that is, melting and recrystallization, seems pertinent for the γ → α conversion considering that the γ‐form shows somewhat reversible and the α‐form keeps nearly intact upon unloading. Moreover, stress‐induced γ → α conversion at large strain can be well correlated with the molecular orientation in the amorphous phase and thus a serial arrangement between the γ crystals and amorphous phase along the stretching direction is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 898–902, 2009 相似文献
6.
Suppressed molecular orientation in nylon 6/clay nanocomposite at large strain: Role of microvoiding
Bing Na Wenfei Xu Ruihua Lv Nana Tian Zhujun Li Run Su Qiang Fu 《Journal of Polymer Science.Polymer Physics》2010,48(5):514-519
A micro‐FTIR measurement has been conducted to explore the molecular orientation of amorphous phase in the nylon 6/clay nanocomposite at large strain. Our results indicate that the molecular orientation in such a nanocomposite during stretching is lower than that observed for the pure nylon 6 counterpart, which is further evidenced by the true stress‐strain dependence. The relaxation of the molecular network, resulted from the destruction of γ‐crystals in part and mostly from microvoding (demonstrated by volume dilatation and 2D‐SAXS measurements), should be responsible for the suppressed molecular orientation in the nylon 6/clay nanocomposite. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 514–519, 2010 相似文献
7.
Guangming Chen Deyan Shen Meng Feng Mingshu Yang 《Macromolecular rapid communications》2004,25(11):1121-1124
Summary: An attenuated total reflection FT‐IR spectroscopic study of the hydrogen bonding, molecular orientation, and crystalline phase transitions in polyamide 6 (PA6)/clay nanocomposite (PA6CN) fibers is proposed. The nanoscale dispersed clay layers lowered the degree of order of hydrogen bonding, affected little the hydrogen bonding strength, and increased the degree of orientation of both γ crystalline and overall domains. A partial γ to α phase transition appeared with time.
8.
J. Umemura Y. Murata K. Tsunashima N. Koizumi 《Journal of Polymer Science.Polymer Physics》1999,37(6):531-538
In connection with ferroelectric behavior of aromatic polyamides poled at a high electric field, polarized infrared spectra were studied in poled films of crystalline and amorphous aromatic polyamides consisting of ring systems to elucidate the relation between the orientation of polar groups and the ferroelectric polarization. The infrared spectra revealed that the CO and N H bonds oriented preferably along the poling direction in both crystalline and amorphous polyamides. The crystallinity of the crystalline polyamide increased with poling. In the amorphous polyamide, strong intermolecular hydrogen bonding is closely related to the retention of ferroelectric polarization in the frozen state of molecular motions below the glass transition temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 531–538, 1999 相似文献
9.
Sankaraiah Subramani Jun‐Young Lee Sung‐Wook Choi Jung Hyun Kim 《Journal of Polymer Science.Polymer Physics》2007,45(19):2747-2761
Trifunctional organosilane‐modified clay was synthesized and used to prepare waterborne trifunctionalsilane‐terminated polyurethane (WSPU)/clay nanocomposite dispersions in this study. Qualitative evidence of the presence of chemically attached silane molecules on clay were confirmed by Fourier transform infrared spectroscopy. The grafted amount and the grafting yield were determined by thermogravimetric analysis and the obtained results were in good agreement with the cation exchange capacity of pristine clay. X‐ray diffraction and transmission electron microscopy examinations indicated that the clay platelets are mostly intercalated or partially exfoliated in the SPU matrix with a d‐spacing of ~2.50 nm. Clay does not influence the location and peak broadness of the glass transition temperature of soft segment as well as hard segment domains in the WSPU/clay films. WSPU/clay dispersion with higher clay content exhibits a marginal increase in the average particle size, but silane modified clay has a pronounced effect compared with Cloisite 20A‐based nanocomposites. In addition, the incorporation of organophilic clay can also enhance the thermal resistance and tensile properties of WSPUs dramatically through the reinforcing effect. The improvement in water and xylene resistance of the silane modified clay nanocomposites proved that trifunctional organosilane can be used as effective modifiers for clays. Storage stability results confirmed that the prepared nanocomposite dispersions were stable. This method provides an efficient way to incorporate silane modified clay in SPU matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2747–2761, 2007 相似文献
10.
Tongfei Wu Andong Liu Tingxiu Xie Guisheng Yang 《Journal of Polymer Science.Polymer Physics》2008,46(17):1802-1810
The compatibilization effects provided by ammonium terminated PMMA(PMMA‐t‐NH3+) on monomer casting polyamide6 (MCPA6)/clay(pristine sodium montmorillonite) nanocomposites were studied in this article. PMMA‐t‐NH3+ used in this study was prepared by radical polymerization using 2‐aminoethanethiol hydrochloride as chain transfer agent. MCPA6/clay/PMMA‐t‐NH3+ nanocomposites were prepared by in situ anionic ring‐opening polymerization of ε‐caprolactam. X‐ray diffraction and transmission electron microscopy plus rheological measurement were used to characterize those nanocomposites. The results indicated that PMMA‐t‐NH3+ would be a good compatibilizer for this system. With PMMA‐t‐NH3+ content increasing, a better dispersion of clay was successfully achieved in the MCPA6 matrix. Furthermore, analysis using differential scanning calorimetry indicated that well dispersed clay layers limited the mobility of the MCPA6 molecule chains to crystallize, reduce the crystalline degree, and favor the formation of the γ‐crystalline form of the MCPA6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1802–1810, 2008 相似文献
11.
The structural and morphological characteristics of biaxially oriented polyamide 12 films are described on the basis of the results from differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), polarized FT‐IR spectroscopy, and small angle X‐ray scattering (SAXS). The WAXD patterns of the oriented polyamide 12 films indicated only the monoclinic γ crystal with little dimensional changes of its unit cell depending on the stretching conditions. The crystallographic angles (α = γ = 90°, β = 121°) that were determined via the WAXD patterns confirmed the monoclinic symmetry of the γ crystal. Annealing the films stretched at 115 °C in boiling 20% formic acid solution did not result in structural changes of the crystalline unit cell. The chain‐axis repeat distance of 31.9 Å for the γ crystal was experimentally obtained with (0 26 0) planes. It was shortened as compared with that of all‐trans conformation. For films having primary orientation to MD, normals to the basal plane of folded‐chain lamellae were parallel to MD (primary stretch direction) resulting in two‐point SAXS patterns. Growth in long spacing with an increase of stretch temperature was discovered. Annealing the films induced further elongation in long spacing. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1189–1200, 2002 相似文献
12.
Ying Liu Chunhua Li Shuang Chen Ellen Wachtel Tadanori Koga Jonathan C. Sokolov Miriam. H. Rafailovich 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):2501-2508
Poly(ethylene-co-vinyl acetate)/clay nanocomposite fibers were fabricated using electrospinning. The fiber diameters were controlled by varying the polymer/chloroform concentration, which resulted in fibers with diameters ranging from 1 to 15 μm. The clay concentration was varied from 0.35 to 6.6 wt %. Scanning electron microscopy revealed that the fiber diameter increased with increasing clay concentration, whereas beading decreased. Transmission electron microscopy revealed a disruption of the spherulite structures by clay, which is consistent with heterogeneous nucleation. Shear modulus force microscopy indicated a reduction in melting point (Tm) with decreasing diameter for fibers thinner than 15 μm, which was confirmed by temperature dependent X-ray diffraction data. For fibers thinner than 8 μm, the presence of clay further enhanced the reduction of Tm. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2501–2508, 2009 相似文献
13.
A. Rawal X.‐W. Fang K. Urman D. Iverson J. U. Otaigbe K. Schmidt‐Rohr 《Journal of Polymer Science.Polymer Physics》2008,46(9):857-860
The effect of tin fluorophosphate‐glass (Pglass) nanoparticles on the polyamide‐6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by 13C solid‐state nuclear magnetic resonance (NMR). The crystallinity determined by direct‐polarization 13C NMR combined with longitudinal relaxation‐time (T1C) filtering varied between 31 and 44%. T1C‐filtered 13C spectra with cross polarization clearly showed resonances of both the α‐ and γ‐crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the α‐phase. This suggests that the Pglass promotes the growth of the γ‐crystalline phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 857–860, 2008 相似文献
14.
K. P. Pramoda H. Hussain H.M. Koh H. R. Tan C. B. He 《Journal of polymer science. Part A, Polymer chemistry》2010,48(19):4262-4267
This report describes a new route to covalently bonded polymer–graphene nanocomposites and the subsequent enhancement in thermal and mechanical properties of the resultant nanocomposites. At first, the graphite is oxidized by the modified Hummers method followed by functionalization with Octadecylamine (ODA). The ODA functionalized graphite oxides are reacted with methacryloyl chloride to incorporate polymerizable ? C?C? functionality at the nanographene platelet surfaces, which were subsequently employed in in situ polymerization of methylmethacrylate to obtain covalently bonded poly(methyl methacrylate) (PMMA)–graphene nanocomposites. The obtained nanocomposites show significant enhancement in thermal and mechanical properties compared with neat PMMA. Thus, even with 0.5 wt % graphene nanosheets, the Tg increased from 119 °C for neat PMMA to 131 °C for PMMA–graphene nanocomposite, and the respective storage modulus increased from 1.29 to 2 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4262–4267, 2010 相似文献
15.
Muhammed Aydin Tamer Uyar Mehmet Atilla Tasdelen Yusuf Yagci 《Journal of polymer science. Part A, Polymer chemistry》2015,53(5):650-658
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658 相似文献
16.
The resistance to air permeation was investigated for an intercalated clay/acrylonitrile‐butadiene copolymer nanocomposite. The nanocomposite is prepared by melt mixing the organo‐treated montmorillonite into a rubber matrix, together with peroxide curative, and crosslinked by conventional compression molding for typical rubbers. In the case of intercalated nanocomposite, the air permeability decreases considerably with increasing clay content, and the decreasing trend agrees reasonably with the Neilson's tortuous model. No considerable improvement is found when the pure montmorillonite is added. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
The recovery properties of dry and water saturated polyamide 6 (PA6) and its copolymer PA6/66 (ratio 4:1 by mol) were studied at elevated temperatures above the glass‐transition temperature in uniaxial tensile tests. The data yield critical points along the true stress–strain curves at which the differential compliance and the recovery property change. These critical points include the onset of the plastic deformation (point A), the yield point (B), and the point where the elasticity of the samples reaches a plateau value (C). The strains at points A and B remain constant, whereas the strain at point C varies with temperature. The invariance of the critical strains at points A and B is assumed to be the result of the homogeneous strain distribution in the system and the general activation of the intralamellar block slip mechanism at low deformations. The strain at point C, being related to the properties of the entangled network, varies because the effective entanglement density of the network changes due to the change in the hydrogen bond number with temperature. With the Gaussian model of Haward and Thackray, we calculated the network moduli. From these data, we derived that the network stress remains constant at point C. At point C, the deformation mechanism starts to change from the block slip mechanism to a stress‐induced melting–recrystallization process. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 87–96, 2005 相似文献
18.
Motohiro Aiba Takahiro Tokuyama Susumu Baba Hidetoshi Matsumoto Hiroki Tomioka Tomoya Higashihara Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2014,52(9):1275-1281
A new concept for the method to provide semipermeability in ultrathin and single‐component wholly aromatic polyamide membranes has been developed for the first time. It was found that water molecules could permeate through the membrane prepared not from polyamides containing flexible ether, bulky binaphthyl, or fluorene rigid units, but one with carboxylic acid groups under a reverse osmosis mode. However, the enhancement of water transport properties by introducing the hydrophilic group of polyamide was not substantial. Therefore, polyamide membranes were prepared from the solution containing aqueous additives in order to weaken hydrogen bonds between polymer chains and thereby to suppress the aggregation of the polymer chains. As a result, water flux was dramatically improved with slightly improved NaCl rejection. Our analyses based on attenuated total reflectance Fourier transform infrared spectroscopy and solid‐state carbon polarization and magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy confirmed that the aggregation of polymer chains due to the hydrogen bonds among the amide linkages was suppressed by the co‐ordination of the aqueous additives to the amide linkage. The state of water in the membranes analyzed by differential scanning calorimetry also supported the formation of pores. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1275–1281 相似文献
19.
Bayar Hexig Yong He Naoki Asakawa Yoshio Inoue 《Journal of Polymer Science.Polymer Physics》2004,42(16):2971-2982
Miscibility and hydrogen bonding interaction have been investigated for the binary blends of poly(butylene adipate‐co‐44 mol % butylene terephthalate)[P(BA‐co‐BT)] with 4,4'‐thiodiphenol (TDP) and poly(ethylene‐ oxide)(PEO) with TDP; and the ternary blends of P(BA‐co‐BT)/PEO/TDP by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicated that the binary blends of P(BA‐co‐BT)/TDP and PEO/TDP were miscible because each blend showed only one composition‐dependent glass‐transition over the entire range of the blend composition. The formation of intermolecular hydrogen bonds between the hydroxyl groups of TDP and the carbonyl groups of P(BA‐co‐BT), and between the hydroxyl groups of TDP and the ether groups of PEO was confirmed by the FTIR spectra. According to the glass‐transition temperature measured by DSC, P(BA‐co‐BT) and PEO, their binary blends were immiscible over the entire range of blend composition, however, the miscibility between P(BA‐co‐BT) and PEO was enhanced through the TDP‐mediated intermolecular hydrogen bonding interaction. It was concluded that TDP content of about 5–10% may possibily enhance miscibility between P(BA‐co‐BT) and PEO via a hydrogen bonding interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2971–2982, 2004 相似文献
20.
Wengui Weng Guohua Chen Dajun Wu Xiangfeng Chen Jinrong Lu Pingping Wang 《Journal of Polymer Science.Polymer Physics》2004,42(15):2844-2856
In this study, the nylon 6/foliated graphite (FG) electrically conducting nanocomposites with a low percolation threshold of less than 0.75 vol % have been prepared via an in situ polymerization approach in the presence of FG nanosheet filler. Based on laser counting, scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction characterization techniques, the structures and morphologies of the nanoscale filling particles and the resulting nanocomposites were examined. Using percolation theory, the conductivity behavior of the nanocomposite samples were modeled and analyzed. Through the use of mean‐field and excluded volume approaches, it was demonstrated that the experimentally observed percolation threshold values could be approximately estimated, and a correlation between the percolation threshold and the aspect ratio of FG particles could be quasi‐quantitatively established. Also, preliminary studies on the effects of FG nanosheets on the thermal properties of the host nylon 6 were performed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2844–2856, 2004 相似文献