首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study quasi‐random properties of k‐uniform hypergraphs. Our central notion is uniform edge distribution with respect to large vertex sets. We will find several equivalent characterisations of this property and our work can be viewed as an extension of the well known Chung‐Graham‐Wilson theorem for quasi‐random graphs. Moreover, let Kk be the complete graph on k vertices and M(k) the line graph of the graph of the k‐dimensional hypercube. We will show that the pair of graphs (Kk,M(k)) has the property that if the number of copies of both Kk and M(k) in another graph G are as expected in the random graph of density d, then G is quasi‐random (in the sense of the Chung‐Graham‐Wilson theorem) with density close to d. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

2.
Let m(r, k) denote the minimum number of edges in an r‐uniform hypergraph that is not k‐colorable. We give a new lower bound on m(r, k) for fixed k and large r. Namely, we prove that if k ≥ 2n, then m(r, k) ≥ ?(k)kr(r/ln r)n/(n+1). © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2004  相似文献   

3.
4.
Let H be a 3‐uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,…,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo‐random conditions, almost all edges of H can be covered by edge‐disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3‐uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo‐random digraphs with even numbers of vertices. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

5.
We show that every 3‐uniform hypergraph H = (V,E) with |V(H)| = n and minimum pair degree at least (4/5 + o(1))n contains a squared Hamiltonian cycle. This may be regarded as a first step towards a hypergraph version of the Pósa‐Seymour conjecture.  相似文献   

6.
Bollobás, Reed, and Thomason proved every 3‐uniform hypergraph ? with m edges has a vertex‐partition V()=V1?V2?V3 such that each part meets at least edges, later improved to 0.6m by Halsegrave and improved asymptotically to 0.65m+o(m) by Ma and Yu. We improve this asymptotic bound to , which is best possible up to the error term, resolving a special case of a conjecture of Bollobás and Scott.  相似文献   

7.
The well‐known Friendship Theorem states that if G is a graph in which every pair of vertices has exactly one common neighbor, then G has a single vertex joined to all others (a “universal friend”). V. Sós defined an analogous friendship property for 3‐uniform hypergraphs, and gave a construction satisfying the friendship property that has a universal friend. We present new 3‐uniform hypergraphs on 8, 16, and 32 vertices that satisfy the friendship property without containing a universal friend. We also prove that if n ≤ 10 and n ≠ 8, then there are no friendship hypergraphs on n vertices without a universal friend. These results were obtained by computer search using integer programming. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 253–261, 2008  相似文献   

8.
9.
《Journal of Graph Theory》2018,88(2):284-293
For a hypergraph H, let denote the minimum vertex degree in H. Kühn, Osthus, and Treglown proved that, for any sufficiently large integer n with , if H is a 3‐uniform hypergraph with order n and then H has a perfect matching, and this bound on is best possible. In this article, we show that under the same conditions, H contains at least pairwise disjoint perfect matchings, and this bound is sharp.  相似文献   

10.
In this paper, we continue to investigate the existence of 5‐GDDs with types g5 m1 and gu. As an application, the known results on the existence of optimal packings with block size 5 are also improved. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
12.
In any r‐uniform hypergraph for 2 ≤ tr we define an r‐uniform t‐tight Berge‐cycle of length ?, denoted by C?(r, t), as a sequence of distinct vertices v1, v2, … , v?, such that for each set (vi, vi + 1, … , vi + t ? 1) of t consecutive vertices on the cycle, there is an edge Ei of that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ?, where ? + jj. For t = 2 we get the classical Berge‐cycle and for t = r we get the so‐called tight cycle. In this note we formulate the following conjecture. For any fixed 2 ≤ c, tr satisfying c + tr + 1 and sufficiently large n, if we color the edges of Kn(r), the complete r‐uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t‐tight Berge‐cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 34–44, 2008  相似文献   

13.
We study a model of random graphs, where a random instance is obtained by adding random edges to a large graph of a given density. The research on this model has been started by Bohman and colleagues (Random Struct Algor 3 ; Random Struct Algor 4 ). Here we obtain a sharp threshold for the appearance of a fixed subgraph and for certain Ramsey properties. We also consider a related model of random k‐SAT formulas, where an instance is obtained by adding random k‐clauses to a fixed formula with a given number of clauses, and derive tight bounds for the non‐satisfiability of the thus‐obtained random formula. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

14.
15.
Let ℋ be a family ofr-subsets of a finite setX. SetD()= |{E:xE}|, (maximum degree). We say that ℋ is intersecting if for anyH,H′ ∈ ℋ we haveHH′ ≠ 0. In this case, obviously,D(ℋ)≧|ℋ|/r. According to a well-known conjectureD(ℋ)≧|ℋ|/(r−1+1/r). We prove a slightly stronger result. Let ℋ be anr-uniform, intersecting hypergraph. Then either it is a projective plane of orderr−1, consequentlyD(ℋ)=|ℋ|/(r−1+1/r), orD(ℋ)≧|ℋ|/(r−1). This is a corollary to a more general theorem on not necessarily intersecting hypergraphs.  相似文献   

16.
Let denote the hypergraph consisting of two triples on four points. For an integer n, let denote the smallest integer d so that every 3‐uniform hypergraph G of order n with minimum pair‐degree contains vertex‐disjoint copies of . Kühn and Osthus (J Combin Theory, Ser B 96(6) (2006), 767–821) proved that holds for large integers n. Here, we prove the exact counterpart, that for all sufficiently large integers n divisible by 4, A main ingredient in our proof is the recent “absorption technique” of Rödl, Ruciński, and Szemerédi (J. Combin. Theory Ser. A 116(3) (2009), 613–636).  相似文献   

17.
This paper is devoted to the well‐posedness for time‐space fractional Ginzburg‐Landau equation and time‐space fractional Navier‐Stokes equations by α‐stable noise. The spatial regularity and the temporal regularity of the nonlocal stochastic convolution are firstly established, and then the existence and uniqueness of the global mild solution are obtained by the Banach fixed point theorem and Mittag‐Leffler functions, respectively. Numerical simulations for time‐space fractional Ginzburg‐Landau equation are provided to verify the analysis results.  相似文献   

18.
The well‐known Ramsey number is the smallest integer n such that every ‐free graph of order n contains an independent set of size u. In other words, it contains a subset of u vertices with no K2. Erd?s and Rogers introduced a more general problem replacing K2 by  for . Extending the problem of determining Ramsey numbers they defined the numbers where the minimum is taken over all ‐free graphs G of order n. In this note, we study an analogous function for 3‐uniform hypergraphs. In particular, we show that there are constants c1 and c2 depending only on s such that   相似文献   

19.
We study conjectures relating degree conditions in 3‐partite hypergraphs to the matching number of the hypergraph, and use topological methods to prove special cases. In particular, we prove a strong version of a theorem of Drisko [14] (as generalized by the first two authors [2]), that every family of 2 n 1 matchings of size n in a bipartite graph has a partial rainbow matching of size n. We show that milder restrictions on the sizes of the matchings suffice. Another result that is strengthened is a theorem of Cameron and Wanless [11], that every n × n Latin square has a generalized diagonal (set of n entries, each in a different row and column) in which no symbol appears more than twice. We show that the same is true under the weaker condition that the square is row‐Latin.  相似文献   

20.
We provide a characterization for the existence and uniqueness of solutions in the space of vector‐valued sequences ? p ( ? , X ) for the multiterm fractional delayed model in the form Δ α u ( n ) + λ Δ β u ( n ) = A u ( n ) + u ( n ? τ ) + f ( n ) , n ? , α , β ? + , τ ? , λ ? , where X is a Banach space, A is a closed linear operator with domain D(A) defined on X, f ? p ( ? , X ) and ΔΓ denotes the Grünwald–Letkinov fractional derivative of order Γ > 0. We also give some conditions to ensure the existence of solutions when adding nonlinearities. Finally, we illustrate our results with an example given by a general abstract nonlinear model that includes the fractional Fisher equation with delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号