首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted on a laminar premixed ethylene-air flame at equivalence ratios of 2.34 and 2.64. Comparisons were made between flames with 5% NO2 added by volume. Soot volume fraction was measured using light extinction and light scattering and fluorescence measurements were also obtained to provide added insight into the soot formation process. The flame temperature profiles in these flames were measured using a spectral line reversal technique in the non-sooting region, while two-color pyrometry was used in the sooting region. Chemical kinetics modeling using the PREMIX 1-D laminar flame code was used to understand the chemical role of the NO2 in the soot formation process. The modeling used kinetic mechanisms available in the literature. Experimental results indicated a reduction in the soot volume fraction in the flame with NO2 added and a delay in the onset of soot as a function of height above the burner. In addition, fluorescence signals—often argued to be an indicator of PAH—were observed to be lower near the burner surface for the flames with NO2 added as compared to the baseline flames. These trends were captured using a chemical kinetics model that was used to simulate the flame prior to soot inception. The reduction in soot is attributed to a decrease in the H-atom concentration induced by the reaction with NO2 and a subsequent reduction in acetylene in the pre-soot inception region.  相似文献   

2.
A diagnostics method was presented that uses emission and scattering techniques to simultaneously determine the distributions of soot particle diameter and number density in hydrocarbon flames. Two manta G-504 C cameras were utilized for the scattering measurement, with consideration of the attenuation effect in the flames according to corresponding absorption coefficients. Distributions of soot particle diameter and number density were simultaneously determined using the measured scattering coefficients and absorption coefficients under multiple wavelengths already measured with a SOC701 V hyper-spectral imaging device, according to the Mie scattering theory. A flame was produced using an axisymmetric laminar diffusion flame burner with 194 mL/min ethylene and 284 L/min air, and distributions of particle diameter and number density for the flame were presented. Consequently, the distributions of soot volume fraction were calculated using these two parameters as well, which were in good agreement with the results calculated according to the Rayleigh approximation,demonstrating that the proposed diagnostic method is capable of simultaneous determination of the distributions of soot particle diameter and number density.  相似文献   

3.
Soot formation characteristics of a lab-scale pulverized coal flame were investigated by performing carefully controlled laser diagnostics. The spatial distributions of soot volume fraction and the pulverized coal particles were measured simultaneously by laser induced incandescence (LII) and Mie scattering imaging, respectively. In addition, the radial distributions of the soot volume fraction were compared with the OH radical fluorescence, gas temperature and oxygen concentration obtained in our previous studies [1], [2]. The results indicated that the laser pulse fluence used for LII measurement should be carefully controlled to measure the soot volume fraction in pulverized coal flames. To precisely measure the soot volume fraction in pulverized coal flames using LII, it is necessary to adjust the laser pulse fluence so that it is sufficiently high to heat up all the soot particles to the sublimation temperature but also sufficiently low to avoid including a too large of a change in the morphology of the soot particles and the superposition of the LII signal from the pulverized coal particles on that from the soot particles. It was also found that the radial position of the peak LII signal intensity was located between the positions of the peak Mie scattering signal intensity and peak OH radical signal intensity. The region, in which LII signal, OH radical fluorescence and Mie scattering coexisted, expanded with increasing height above the burner port. It was also found that the soot formation in pulverized coal flames was enhanced at locations where the conditions of high temperature, low oxygen concentration and the existence of pulverized coal particles were satisfied simultaneously.  相似文献   

4.
米利  周宏伟  孙祉伟  刘丽霞  徐升华 《物理学报》2013,62(13):134704-134704
聚集速率是评估胶体体系特性及稳定性的关键参数, 静态光散射和动态光散射则是测量聚集速率的两个重要方法. 然而, 用静态光散射和动态光散射测量聚集速率时, 需要知道有关单粒子和双粒子聚集体光散射特性的数据. 为此, 通常需要把动、静两种方法结合, 才能消去这个数据. 以前各种近似理论曾用来解决这个问题, 但因粒子尺寸和形状的限制, 结果并不理想. 而T矩阵方法可以不受粒子大小和形状的限制计算其光散射特性. 本工作用T矩阵方法直接计算静态光散射和动态光散射所必须的粒子散射特性, 并将该法得到的聚集速率与动静态光散射结合法得到的聚集速率进行了比较, 两者结果很接近. 本工作为简化静态光散射和动态光散射测量聚集速率, 扩展其应用范围开辟了新途径. 关键词: T矩阵')" href="#">T矩阵 光散射法 聚集速率  相似文献   

5.
We conducted a numerical study on the fluid dynamic, thermal and chemical structures of laminar methane–air micro flames established under quiescent atmospheric conditions. The micro flame is defined as a flame on the order of one millimetre or less established at the exit of a vertically-aligned straight tube. The numerical model consists of convective–diffusive heat and mass transport with a one-step, irreversible, exothermic reaction with selected kinetics constants validated for near-extinction analyses. Calculations conducted under the burner rim temperature 300 K and the adiabatic burner wall showed that there is the minimum burner diameter for the micro flame to exist. The Damköhler number (the ratio of the diffusive transport time to the chemical time) was used to explain why a flame with a height of less than a few hundred microns is not able to exist under the adiabatic burner wall condition. We also conducted scaling analysis to explain the difference in extinction characteristics caused by different burner wall conditions. This study also discussed the difference in governing mechanisms between micro flames and microgravity flames, both of which exhibit similar spherical flame shape.  相似文献   

6.
Laminar methane/air premixed flames at different pressures in a newly developed high-pressure laminar burner are studied through Cantera simulation and filtered Rayleigh scattering(FRS).Different gas component fractions are obtained through the detailed numerical simulations.And this approach can be used to correct the FRS images of large variations in a Rayleigh cross section in different flame regimes.The temperature distribution above the flat burner is then presented without stray light interference from soot and wall reflection.Results also show that the extent of agreement with the single point measurement by the thermocouple is 6%.Finally,this study concludes that the relative uncertainty of the presented filtered Rayleigh scattering diagnostics is estimated to be below 10% in single-shot imaging.  相似文献   

7.
The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.  相似文献   

8.
This paper describes the unusual sooting structure of three flames established by the laminar recirculation zones of a centerbody burner. The vertically mounted burner consists of an annular air jet and a central fuel jet separated by a bluff-body. The three ethylene fueled flames are identified as: fully sooting, donut-shape, and ring-shape sooting flames. Different shapes of the soot structures are obtained by varying the N2 dilution in the fuel and air jets while maintaining a constant air and fuel velocity of 1.2 m/s. All three flames have the unusual characteristic that the soot, entrained into the recirculation zone, follows discrete spiral trajectories that terminate at the center of the vortex. The questions are what cause: (1) the unusual sooting structures and (2) the spiral trajectories of the soot? Flame photographs, laser sheet visualizations, and calculations with a 2D CFD-based code (UNICORN) are used to answer these questions. The different sooting structures are related to the spiral transport of the soot, the spatial location of the stoichiometric flame surface with respect to the vortex center, and the burnout of the soot particles. Computations indicate that the spiral trajectories of the soot particles are due to thermophoresis.  相似文献   

9.
There is a need to better understand particle size distributions (PSDs) from turbulent flames from a theoretical, practical and even regulatory perspective. Experiments were conducted on a sooting turbulent non-premixed swirled ethylene flame with secondary (dilution) air injection to investigate exhaust and in-burner PSDs measured with a Scanning Mobility Particle Sizer (SMPS) and soot volume fractions (fv) using extinction measurements. The focus was to understand the effect of systematically changing the amount and location of dilution air injection on the PSDs and fv inside the burner and at the exhaust. The PSDs were also compared with planar Laser Induced Incandescence (LII) calibrated against the average fv. LII provides some supplemental information on the relative soot amounts and spatial distribution among the various flow conditions that helps interpret the results. For the flame with no air dilution, fv drops gradually along the centreline of the burner towards the exhaust and the PSD shows a shift from larger particles to smaller. However, with dilution air fv reduces sharply where the dilution jets meet the burner axis. Downstream of the dilution jets fv reduces gradually and the PSDs remain unchanged until the exhaust. At the exhaust, the flame with no air dilution shows significantly more particles with an fv one to two orders of magnitude greater compared to the Cases with dilution. This dataset provides insights into soot spatial and particle size distributions within turbulent flames of relevance to gas turbine combustion with differing dilution parameters and the effect dilution has on the particle size. Additionally, this work measures fv using both ex situ and in situ techniques, and highlights the difficulties associated with comparing results across the two. The results are useful for validating advanced models for turbulent combustion.  相似文献   

10.
The optical properties of soot, in particular the propensity of soot to absorb and scatter light as a function of wavelength, are key parameters for the correct interpretation of soot optical diagnostics. An overview of the data available in the literature highlights the differences in the reported optical properties of aging soot. In many cases, the properties of mature soot are used when evaluating in-flame soot but this assumption might not be suitable for all conditions and should be checked. This need has been demonstrated by performed spectral resolved line-of-sight attenuation (Spec-LOSA) measurements on an ethylene/air premixed and non-premixed flame. Transmission electron microscopy of thermophoretically sampled soot was also performed to qualify the soot aging and to establish soot morphology in order to correct light extinction coefficients for the scattering contribution. The measured refractive index absorption function, E(m) λ , showed a very strong spectral dependence which also varied with height above the burner for both flames. However, above 700 nm, the slope of the refractive index function was near zero for both flames and all measurement heights. The upper visible and near infrared wavelengths are therefore recommended for soot optical measurements.  相似文献   

11.
Spectral optical techniques are combined to characterise the distribution of large-molecule soot precursors, nanoparticles of organic carbon, and soot in two turbulent non-premixed ethylene flames with differing residence times. Laser-induced fluorescence, laser-induced incandescence and light scattering are used to define distributions across the particle size distribution. From the scattering and laser-induced emission measurements it appears that two classes of particles are formed. The first ones are preferentially formed in the fuel-rich region of the flame closer to the nozzle, have sizes of the order of few nanometers but are not fully solid particles, because the constituent molecules still maintain their individual identity exhibiting strong broadband fluorescence in the UV. The second class of particles constituted by solid particles, with sizes of the order of tens of nanometers are able to absorb a sufficient number of photons to be heated to incandescent temperatures. These larger particles are formed at larger residence times in the flame since they are the result of slow growth processes such as coagulation or carbonization. The flames are also modeled in order to produce mixture fraction maps. A new discovery is that nanoparticles of organic carbon concentration, unlike soot, does correlate well with mixture fraction, independent of position in the flame. This is likely to be a significant benefit to future modelling of soot inception processes in turbulent non-premixed flames.  相似文献   

12.
Choi  M.  Cho  J.  Lee  J.  Kim  H.W. 《Journal of nanoparticle research》1999,1(2):169-183
The evolution of silica aggregate particles in a coflow diffusion flame has been studied experimentally using light scattering and thermophoretic sampling techniques. An attempt has been made to calculate the aggregate number density and volume fraction using the measurements of scattering cross section from 90° light scattering with combination of measuring the particle size and morphology from the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh–Debye–Gans and Mie theory for fractal aggregates and spherical particles, respectively. Using this technique, the effects of H2 flow rates on the evolution of silica aggregate particles have been studied in a coflow diffusion flame burner. As the flow rate of H2 increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of H2 flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. For the cases of high flame temperatures, the particle sizes become larger and the number densities decrease by coagulation as the particles move up within the flame. For cases of low flame temperatures, the primary particle diameters of aggregates vary a little following the centerline of burner and for the case of the lowest flame temperature in the present experiments, the sizes of primary particles even decrease as particles move upward.  相似文献   

13.
The effects of pressure on soot formation and the structure of the temperature field were studied in co-flow methane-air laminar diffusion flames over a wide pressure range, from 10 to 60 atm in a high-pressure combustion chamber. The selected fuel mass flow rate provided diffusion flames in which the soot was completely oxidized within the visible flame envelope and the flame was stable at all pressures considered. The spatially resolved soot volume fraction and soot temperature were measured by spectral soot emission as a function of pressure. The visible (luminous) flame height remained almost unchanged from 10 to 100 atm. Peak soot concentrations showed a strong dependence on pressure at relatively lower pressures; but this dependence got weaker as the pressure is increased. The maximum conversion of the fuel’s carbon to soot, 12.6%, was observed at 60 atm at approximately the mid-height of the flame. Radial temperature gradients within the flame increased with pressure and decreased with flame height above the burner rim. Higher radial temperature gradients near the burner exit at higher pressures mean that the thermal diffusion from the hot regions of the flame towards the flame centerline is enhanced. This leads to higher fuel pyrolysis rates causing accelerated soot nucleation and growth as the pressure increases.  相似文献   

14.
This study demonstrates the major differences in the evolution of the particle size distributions (PSDs), both measured and modeled, of soot in premixed benzene and ethylene flat flames. In the experiments, soot concentration and PSDs were measured by using a scanning mobility particle sizer (SMPS, over the size range of 3-80 nm). The model employed calculations of gas phase species coupled with a discrete sectional approach for the gas-to-particle conversion. The model includes reaction pathways leading to the formation of nano-sized particles and their coagulation to larger soot particles. The particle size distribution, both experimental and modeled, evolved from a single particle mode (the nucleation mode) to a bimodal size distribution. An important distinction between the results for the ethylene and benzene flames is the behavior of the nucleation mode which persists at all heights above the burner (HAB) for ethylene whereas it was greatly suppressed at greater HAB for the benzene flames. The explanation for the decreased nucleation mode at higher elevations in the benzene flame is that the aromatics are consumed in the oxidation zone of the flame. Fair predictions of particle-phase concentrations and particle sizes in the two flames were obtained with no adjustments to the kinetic scheme. In agreement with experimental data, the model predicts a higher formation of particulate in the benzene flame as compared with the ethylene flame.  相似文献   

15.
This paper presents the study we carried out on the formation of soot particles in low-pressure premixed CH4/O2/N2 flames by using Laser-Induced Incandescence (LII). Flames were stabilised at 26.6 kPa (200 torr). Four different equivalence ratios were tested (Φ = 1.95, 205, 2.15 and 2.32), Φ = 1.95 corresponding to the equivalence ratio for which LII signals begin to be measurable along the flame. The evolution of the LII signals with laser fluence (fluence curve), time (temporal decay) and emission wavelength is reported at different heights above the burner. We specifically took advantage of the low-pressure conditions to probe with a good spatial resolution the soot inception zone of the flames. Significant different behaviours of the fluence curves are observed according to the probed region of the flames and Φ. In addition, while the surface growth process is accompanied by an increase in the LII decay-times (indicator of the primary particle diameter) at higher Φ, decay-times become increasingly short at lower Φ reaching a constant value along the flame at Φ = 1.95. These behaviours are consistent with the detection of the smallest incandescent particles in the investigated flames, these particles having experienced very weak surface growth. Flame modelling including soot formation has been implemented in flames Φ = 2.05 and 2.32. Experimental quantitative soot volume fraction profiles were satisfactorily reproduced by adjusting the fraction of reactive soot surface available for reactions. The qualitative variation of the computed soot particle diameter and the relative weight of surface growth versus nucleation were consistent with the experimental observations.  相似文献   

16.
The possibility of inferring by a non-invasive experimental method the size of primary particles (spherules), which constitute the agglomerated soot generated in an ethylene–air diffusion flame, is investigated. In contrast to the predictions from the Mie theory for isolated spheres, experimental evidence is provided here about the fact that the size of spherules (some tens of nanometers), which stick together to form agglomerates (some hundreds of nanometers), can be recognized from polarization ratio measurements. Validation of the proposed scattering technique is obtained by first performing standard measurements of the primary particle size by SEM analysis of soot samples taken on quartz inserted directly in the flame along the burner axis. Then, the polarization ratio P(θ)≡σHHVV of scattered light is measured at the same locations and for the same flame conditions for different polar scattering angles θ. As major result, evidence is provided of a linear relationship existing between the primary sizes, obtained independently by SEM analysis, and the measurements of the polarization ratio P(90°). Finally, a procedure is reported and applied to retrieve the absolute spherule size from the direct observation of the transition between the power-law and Porod’s scattering regimes, which correspond to the domains of long-range (fractal) and short-range (not fractal) interactions between primary particles, respectively. Received: 24 February 1999 / Final version: 6 December 1999 / Published online: 1 March 2000  相似文献   

17.
This study integrates new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through a flat porous burner into an oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation as well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well as “open-tip” and “closed-tip” flames.  相似文献   

18.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

19.
Differential mobility analysis (DMA) is used to measure on-line the size distributions of inception particles in atmospheric pressure premixed ethylene air flames ranging from C/O = 0.61 to 0.69, just at the onset of soot formation. DMA is also used, in combination with electrospray, to measure the size distributions of suspended flame products captured in water samples. The DMA systems used for this work employ detectors sensitive to the full range of molecular clusters/nanoparticles in gas-to-particle conversion processes (as small as about 1 nm) and they have much larger sheath gas flow rates than is typically used to reduce losses and peak broadening by diffusion. The measured size distributions show that the first particles observed in flames have a size of 2 nm, consistent with previous in situ measurements by light scattering and extinction (LSE) and the off-line measurements of material captured in water samples from the same flames. For richer flames, the quantity of the 2 nm particles measured increases, and the width of its size distribution shifts asymmetrically toward larger sizes. A numerical coagulation model assuming size-dependent coagulation efficiency predicts well the experimentally measured size distributions in the flames examined. Similarly, the slightly larger size distributions measured by atomic force microscopy of inception particles deposited on surfaces can also be attributed to the size-dependent coagulation/adhesion efficiency. The results imply that the smaller nanoparticles formed in combustion processes have a longer lifetime than those larger than 6-7 nm and may play an important role in the formation of fine organic carbon particulate in the atmosphere.  相似文献   

20.
Several applications of laser diagnostic techniques to visualize combustion phenomena are presented, including reactive Mie scattering for flow, Rayleigh and Raman spectroscopy for major species, laser-induced fluorescence for minor species, and laser extinction, scattering, and laser-induced incandescence for soot. These techniques have been applied to diffusion flame oscillation, a recirculation zone in a burner, laminar and turbulent lifted flames, flame propagation along a vortex tube, and soot zone characteristics, to demonstrate the usefulness of the techniques to provide a better understanding of physical mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号