首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of fluorinated azobenzene‐based push‐pull chromophores with one, two, and three trifluorovinyl ether (TFV) groups in linear and branched architecture was synthesized and utilized as active materials in the low optical loss electro‐optic (EO) composites. The fluorinated azobenzene chromophores exhibited increased solubility (30–50 wt %) in semifluorinated polymer host, such as perfluorocyclobutane (PFCB) aromatic ether resin after crosslinking, compared with the commercially available nonfluorinated azobenzene chromophore Disperse Red 1 (1–2 wt %). The impact of this approach on the optical properties on the polymer blends is assessed through optical propagation loss measurements and EO characterization. The resulting fluorinated EO composites showed excellent optical clarity, low birefringence, and low optical loss less than 0.5 dB/cm, while giving EO coefficients of about 3–7 pm/V at 1550 nm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3166–3177, 2007  相似文献   

2.
Two series of novel electro‐optic (EO) polycarbonates containing two different kinds of nonlinear optical (NLO) chromophores with tricyanofurane (TCF) electron acceptor have been successfully prepared through the facile polycondensation between diol NLO chromophore and bisphenol A bis(chloroformate). These new polycarbonates which were characterized by 1H‐NMR and Fourier transform infrared exhibited good solubility in common polar organic solvents. They also showed glass transition temperatures (Tg) in the range of 124–156 °C. The morphology studies indicated that these polycarbonates had good film quality before and after corona poling. The EO coefficients (r33) of two polycarbonates films were up to 45 pm/V (PC‐TCFC‐2) and 75 pm/V (PC‐DFTC‐3) at the wavelength of 1310 nm. Moreover, good temporal stability of the poling‐induced dipole alignment was also achieved, and the resulting poled films of PC‐TCFC‐2 and PC‐DFTC‐3 could retain 90 and 80% of the initial EO activities at 85 °C for more than 500 h, respectively. Both EO activity and temporal stability results were better than the guest–host EO polymers containing the same concentration chromophores, which indicated that such kind of polycarbonates could effectively suppress the intermolecular electrostatic interaction and translate microscopic molecular hyperpolarizability into macroscopic EO activity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2841–2849.  相似文献   

3.
Nano‐sized epoxy oligosiloxanes (EO) were prepared by condensation reaction between 3‐glycidoxypropyltrimethoxysilane (GPTS) and Diphenylsilandiol (DPSD). Through a composition change of GPTS and DPSD, EO of various structure and sizes were obtained. The molecular structure and size of EO synthesized were investigated by experimental measurements. Regardless of their composition, molecular structure of EO was linear or branch. The amount of species of high molecular weight and their molecular size increased with addition of DPSD. We confirmed that epoxy groups of EO were thermally cured using a thermal initiator and curing agent. Finally, we fabricated transparent epoxy‐based hybrimer films by thermal curing of EO resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 756–763, 2009  相似文献   

4.
The synthesis and characterization of four methacrylate copolymers obtained by radical addition polymerization of methyl methacrylate as well as a new methacrylate azophenylbenzoxazole chromophore in percentages of 10, 30, 50, and 70% were explored. The copolymers were amorphous and showed glass‐transition temperatures ranging from 132 to 146 °C. High‐quality polymer films were easily obtained by spin coating from N‐methylpyrrolidone solutions. Polymer films spun cast on iridium tin oxide (ITO) substrates were used in the electro‐optic (EO) experiments to evaluate the EO coefficients r33 using the reflection technique. The measured values fell in the range of 1.7–3.7 pm/V (laser incident wavelength of 1.552 μm) depending on the percentage of chromophore in the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1162–1168, 2001  相似文献   

5.
A methacrylate‐based crosslinking hyperbranced polymers have been synthesized through initiator‐fragment incorporation radical polymerization and used for the temperature stable electro‐optic (EO) polymer application. This polymer consists of methyl methacrylate, 2‐metacryloxyethyl isocyanate, and ethylene glycol dimethacrylate (EGDMA) monomers. The use of EGDMA as a bifunctional unit resulted in the solvent‐soluble crosslinking hyperbranched chain, so that the EO polymer enhanced glass transition temperatures. A phenyl vinylene thiophene vinylene bridge nonlinear optical chromophore was attached to the polymer backbone as the side‐chain by a post‐functionalization reaction. The loading concentration of the chromophore was varied between 30 and 50 wt % by simply changing the mixing ratio of the precursor polymer to the chromophore. The synthesized EO polymers produced optical quality films with a light propagation loss of 0.61 dB/cm in a slab waveguide at 1.31 μm. The electrically poled film had an EO coefficient (r33) of 139 pm/V at 1.31 μm. The EO crosslinking hyperbranced polymer had a high‐glass transition temperature of 170 °C, and exhibited excellent temporal stability of the EO activity at 85 °C for 500 h. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A method based on Fourier transform infrared (FTIR) transmission spectra is proposed to measure the crystallinity of isotactic polypropylene (iPP) samples. The method parameters were tuned as compared with wide‐angle X‐ray scattering measurements performed on test samples characterized by different crystallinity values obtained by solidification of thin iPP films under several cooling rates in a homemade device. The FTIR dichroic ratio measurements were adopted to measure crystalline and average Hermans' orientation factors of iPP samples obtained by film casting. The crystalline orientation measurement method was validated as compared with the birefringence measurement. The techniques were successfully used in real time during some film‐casting runs with a suitably modified FTIR system made of a spectrometer equipped with two optical guidelines and an external detector. Real‐time measurements are reported and discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 998–1008, 2003  相似文献   

7.
Electric‐field‐induced molecular alignments of side‐chain liquid‐crystalline polyacetylenes [? {HC?C[(CH2)mOCO‐biph‐OC7H15]}? , where biph is 4,4′‐biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X‐ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of PA9EO7 was achieved within a temperature range between the isotropic‐to‐smectic A transition temperature and 115 °C, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric‐field‐induced molecular orientation of a side‐chain liquid‐crystalline polymer with a stiff backbone was studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1333–1341, 2004  相似文献   

8.
The surface sheet resistance of conducting films of glycerol‐doped poly(3,4‐ethylenedioxy‐thiophene)–poly(styrene sulfonate) is largely dependent on the annealing temperature. The presence of free glycerol in insufficiently baked films, as indicated by infrared spectra and thermogravimetric analysis, results in conducting polymer films with poor morphology and low electrical conductivity. The device performance of organic light‐emitting diodes using this modified poly(3,4‐ethylenedioxy‐thiophene)–poly(styrene sulfonate) as an anode is also greatly affected by the baking conditions of the conducting films. The maximum light output, current density, and luminous power efficiency are observed from devices using anodes baked at a high temperature close to the boiling point of glycerol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2522–2528, 2003  相似文献   

9.
We synthesized new nonlinear optical (NLO) chromophores containing a 3,5‐bis(3,5‐bisbenzyloxy‐benzyloxy)‐benzoate dendron. Tricyanopyrroline (TCP)‐based chromophores were designed and prepared by virtue of its strong electron withdrawing property. A soluble polyimide containing 6‐({4‐[2‐(1‐allyl‐4‐cyano‐5‐dicyanomethylene‐2‐oxo‐2,5‐dihydro‐1H‐pyrrol‐3‐yl)‐vinyl]‐phenyl}‐butyl‐amino)‐hexanoyl group in the side chain was also prepared as an NLO active host polymer. A benzoate dendron was tethered at two different binding positions of the chromophore to yield two different guest molecules. Thin‐film composites of these dendronized chromophores dissolved in the NLO active polyimide host were employed to fabricate the electro‐optic (EO) samples. The EO properties of new NLO polyimides containing dendronized chromophores were compared with those of the sample with nondendronized plain chromophores. The effect of a bulky dendron on the EO properties was investigated using an in situ reflection technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5064–5076, 2008  相似文献   

10.
Methacrylate polymers containing different molar contents of nonlinear optical (NLO) active molecular segments based on 2‐[4‐(N‐methyl,N‐hydroxyethylamino)phenylazo]‐phenyl‐6‐nitrobenzoxazole chromophores were synthesized, and their phase behavior and second‐order NLO properties were investigated. Polymers containing 6–17 mol % chromophore segments allowed the preparation of amorphous and optically clear thin films. Some mesomorphic structuration was exhibited by a polymer with 33 mol % chromophoric units. However, this feature did not prevent the possibility of investigating the NLO properties. Nonlinear resonance‐enhanced d33 coefficients were determined by second harmonic generation experiments on spin‐coated, corona‐poled thin films at λ = 1064 nm. Values ranging from 40 to 60 pm/V were measured with increasing chromophore molar contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1841–1847, 2003  相似文献   

11.
The films of N‐ethyl chitosan were prepared via the solution‐casting technique with formic acid as a solvent. The solutions with different concentrations (35 and 40 wt %) were prepared previously from dilute solution (1 wt %) via evaporating process. The crystalline morphology of these films was investigated by means of polarized optical microscopy and scanning electron microscopy. Normal spherulites with a low growth rate formed in the casting films. The different morphologies of spherulite appeared in the films cast from the solutions with different concentrations. After further crystallizing for a few days, the spherulites were decorated by thousands of needlelike extended‐chain crystals, which had a typical size of ~50 μm (length) × 2~5 μm (width) × 1~2 μm (height) in the central part of the spherulite, but a typical size of ~5 μm (lenght)× 1~2 μm (width) × 1~2 μm (height) in the fringe part of the spherulite. The real concentration for crystallization was determined to be 65–82 wt%. Thus, the crystallization actually appeared in supersaturated solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2033–2038, 2003  相似文献   

12.
With anodic alumina with an ordered nanopore array used as a template, poly[2‐metoxy‐5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene vinylene] (MEH–PPV) was embedded into the nanopores, and then two‐dimensional arrays of light‐emitting nanopolymers were prepared. By the measurement and analysis of photoluminescence and photoluminescence excitation spectra of the samples, it was demonstrated that the optical properties of the nano‐MEH–PPV arrays were obviously different from those of MEH–PPV films. The conformations of the MEH–PPV chains in the nanopores, films, and solutions and their effects on the optical properties were examined. It was determined experimentally that the conformations of the MEH–PPV chains in the solutions were maintained in the nano‐MEH–PPV arrays. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3037–3041, 2006  相似文献   

13.
Novel anhydride‐terminated fluorinated hyperbranched polyimides (FHBPIs) were successfully prepared by condensation of a triamine monomer, 1,3,5‐tris(2‐trifluoromethyl‐4‐aminopheoxy) benzene (TFAPOB), and various aromatic dianhydride monomers with different linear length. UV–vis spectra indicate high optical transparency of FHBPI films with a UV–vis absorption edge of 350–395 nm. FHBPIs show increased mechanical properties with the linear length of dianhydride monomer. Young's moduli of FHBPI range from 2.37 to 2.56 Gpa, similar to those of their linear analogs. These FHBPI films also present a minimum birefringence value as low as 0.0025 at 650 nm and have low optical absorption in the optical communication wavelengths of 1310 and 1550 nm. Rib‐type optical waveguide device fabricated by FHBPI‐4d demonstrated an obvious near‐field mode pattern of the waveguide. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6269–6279, 2009  相似文献   

14.
Grafting by gamma irradiation has a significant influence on the dispersion properties of polymeric materials. Accordingly, we study the effect of grafting on the material electronic structure parameters such as the fundamental absorption edge and bandgap structure. The optical absorption of grafted polymeric films of poly(tetrafluoroethylene‐co‐perfluorovinyl ether) (PFA‐g‐PAAc) is determined in a very wide spectral range of 0.2–3 μm. The nonlinear two‐photon absorption coefficient is determined that showed an increase as a result to the grafting process. Moreover, a significant increase in the optical conductivity for the polymeric films is acquired after grafting. Positron annihilation spectroscopy is used to study polymer structure and volume size of nanoholes of Ps. The data revealed an increase of crosslinking with a smaller average volume size with grafting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2045–2051, 2010  相似文献   

15.
Radiation effects on fluoropolymers induced by high‐energy irradiation were investigated. Poly(fluorovinylidene‐co‐hexafluoropropylene) [P(VDF‐HFP)] films were irradiated with γ rays in air. Peroxy radicals formed by irradiation in the presence of oxygen were partially converted into more stable products such as hydroperoxides, alcohols, and acids. These oxidation products were identified by Fourier transform infrared spectroscopy. Specific chemical treatments were carried out to identify and separate overlapping absorption bands. Model compounds were also used. On the basis of the results, a mechanism of degradation for γ‐irradiated P(VDF‐HFP) is proposed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1509–1517, 2003  相似文献   

16.
Three types of new bis(ether dianhydride) monomers, [4,4′‐(2‐(3′‐methylphenyl)‐1,4‐phenylenedioxy)‐diphthalic anhydride (4a)], [4,4′‐(2‐(3′‐trifluoromethylphenyl)‐1,4‐phenylenedioxy)‐diphthalic anhydride (4b)], and [4,4′‐(2‐(3′,5′‐ditrifluoromethylphenyl)‐1,4‐phenylenedioxy)‐diphthalic anhydride (4c)] were prepared via a multistep reaction sequence. Three series of soluble poly(ether imide)s (PEIs) were prepared from the obtained dianhydrides by a two‐step chemical imidization method. Experimental results indicated that all the PEIs had glass transition temperature in the range of 200–230 °C and the temperature of 5% weight loss in the range of 520–590 °C under nitrogen. The PEIs showed excellent solubility in a variety of organic solvents due to introduction of the bulky pendant groups and were capable of forming tough films. The casting films of PEIs (80–91 μm in thickness) had tensile strengths in the range from 88 to 117 MPa, tensile modulus from 2.14 to 2.47 GPa, and elongation at break from 15 to 27%. The casting films showed UV‐Vis absorption edges at 357–377 nm, low dielectric constants of 2.73–2.82, and water uptakes lower than 0.66 wt %. The spin‐coated films of PEIs presented a minimum birefringence value as low as 0.0122 at 650 nm and low optical absorption at the optical communication wavelengths of 1310 and 1550 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3281–3289, 2010  相似文献   

17.
Nondestructive, three‐dimensional refractive‐index measurements are used for the determination of both the crystallinity and orientation in thin polymer films. The prism wave‐guide coupler is particularly suited for three‐dimensional isotropic and anisotropic thin‐film studies because of the quantitative character of the information obtained and the ease of data acquisition. It has been limited, however, to determining only the refractive index of transparent or weakly absorbing thin‐film samples. On the basis of thin‐film optics, this study develops a new internal reflection intensity analysis (IRIA) method, which uses the intensity information rather than the conventional mode angle values to acquire both the refractive index and the extinction coefficient over a range of transparent to highly absorbing polymer films. Therefore, the IRIA method overcomes the limitations of this prism wave‐guide coupler technique, which can only measure the refractive index of a weakly absorbing sample. With a Metricon PC‐2010 as the skeletal framework, a prototype instrument has been developed to apply and test the IRIA method. A study comparing both the refractive index and extinction coefficient obtained with ellipsometry, ultraviolet–visible/near‐infrared reflectometry, and IRIA for solvent blue 59 dyed polystyrene films confirms that the IRIA method is effective for obtaining the three‐dimensional refractive indices and extinction coefficients of polymer films. In addition, the refractive index and extinction coefficient spectrum (400–800 nm) of solvent blue 59 have been determined with the effective media theory. Furthermore, the three‐dimensional complex refractive indices of highly absorbing black electrical tape, inaccessible to other optical measurement because of its surface character, has been determined by the IRIA method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 842–855, 2003  相似文献   

18.
Benzophenone‐containing, anhydride‐terminated hyperbranched poly(amic acid)s were end‐capped by ortho‐alkyl aniline in situ and then chemically imidized, yielding autophotosensitive hyperbranched polyimides. The polyimides were soluble in strong polar solvents, such as N‐methyl‐2‐pyrrolidone, N‐dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Thermogravimetric analysis revealed their excellent thermal stability, with a 5 wt % thermal loss temperature in the range of 527–548 °C and a10 wt % thermal loss temperature in the range of 562–583 °C. The strong absorption of the polyimide films in ultraviolet–visible spectra at 365 nm indicated that the hyperbranched polyimides were patternable. Highly resolved images with a line width of 6 μm were developed by ultraviolet exposure of the polymer films. A well‐defined image with lines as thin as 3 μm was also patterned, but the lines were rounded at the edges. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2026–2035, 2003  相似文献   

19.
A series of main chain donor‐acceptor low‐bandgap conjugated polymers were designed, synthesized, and used for the fabrication of polymer solar cells. The absorption spectra of low‐bandgap conjugated polymers were tuned by the ratio of three copolymerization monomers. The polymers in films exhibited broad absorption ranging from 300 to 1000 nm with optical bandgaps of around 1.40 eV. All of the polymers have been investigated as an electron donor in photovoltaic cells blending with PCBM ([6, 6]‐phenyl C61‐butyric acid methyl ester) as an electron acceptor and power conversion efficiencies (PCEs) of 1.32–1.8% have been obtained. As for P1 , PCE increases from 1.67 to 2.44% after adding 1,8‐diiodooctance as an additive. The higher PCEs are probably because of better phase separation of blend films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2571–2578, 2010  相似文献   

20.
The copolymerization of 1,5‐dioxepan‐2‐one (DXO) and ε‐caprolactone, initiated by a five‐membered cyclic tin alkoxide initiator, was performed in chloroform at 60 °C. Copolymers with different molar ratios of DXO (25, 40, and 60%) were synthesized and characterized. 13C NMR spectroscopy of the carbonyl region revealed the formation of copolymers with a blocklike structure. Differential scanning calorimetry measurements showed that all the copolymers had a single glass transition between ?57 and ?49 °C and a melting temperature in the range of 30.1–47.7 °C, both of which were correlated with the amount of DXO. An increase in the amount of DXO led to an increase in the glass‐transition temperature and to a decrease in the melting temperature. Dynamic mechanical thermal analysis measurements confirmed the results of the calorimetric analysis, showing a single sharp drop in the storage modulus in the temperature region corresponding to the glass transition. Tensile testing demonstrated good mechanical properties with a tensile strength of 27–39 MPa and an elongation at break of up to 1400%. The morphology of the copolymers was examined with polarized optical microscopy and atomic force microscopy; the films that crystallized from the melt showed a short fibrillar structure (with a length of 0.05–0.4 μm) in contrast to the untreated solution‐cast films. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2412–2423, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号