首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extruded parts of non‐sterilized and β‐irradiated (25 and 50 kGy) plasticized poly(vinyl chloride) (PVC) used for disposable medical devices have been studied to investigate the effect of sterilization on surface chemical composition. The polymer surfaces were analysed using angle‐resolved x‐ray photoelectron spectroscopy. The inner surface of the blood tubing lines showed a fairly smooth surface both before and after sterilization, so a laterally homogeneous surface can be assumed for XPS analysis. The XPS survey spectra exhibited no signals besides carbon, chlorine, oxygen and calcium. Detailed analysis of the regions showed the C 1s, Cl 2p and O 1s signals to be multi‐component, presenting signals of the PVC, the plasticizer and the other additives. Binding energies remained constant irrespective of β‐radiation dosage, but the amount of chlorine component at 198.4 ± 0.1 eV (associated with modified PVC) decreased with sterilization dosage. Angle‐resolved XPS revealed that this component is located at the outermost surface of the polymer. It can be hypothesized that the production processes themselves (extrusion and/or injection molded) already induce modifications of the polymer surface and also lead to surface segregation of the plasticizer. During the subsequent thermal sterilization of the polymer dehydrochlorination continues but, because of the very short time required by the β‐irradiation technology to sterilize devices, the atmospheric oxygen is unable to diffuse into the irradiated material, thus inhibiting further side‐degradation of the materials, such as thermo‐oxidative degradation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Angle‐resolved x‐ray photoelectron spectroscopy (ARXPS) measurements were made, in repeated sequences employing Al and Mg x‐ray sources alternately, on a polystyrene sample that had been exposed to an oxygen plasma. It was observed that oxygen was lost from the sample over a period of 5 h and 40 min. The ARXPS data sets were corrected for the time displacement between consecutive measurements at different photoemission angles and fitted with three simple models in order to extract oxygen concentration–depth profiles, consistent with the data, as a function of time. The oxygen depth profiles were found to evolve in a consistent manner, indicating both a loss of average oxygen content and thickness in the ‘oxidized polymer layer’. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The dependence of x‐ray absorption fine structure (XAFS) on the chemical environment implies a corresponding environmental dependence of photoionization cross‐sections. The practical consequences of the XAFS for quantitative core‐level photoelectron spectroscopy have been studied for a number of materials with the help of simulations based on the ab initio FEFF code. The XAFS effects are predicted to be significant only for photoelectron kinetic energies below 250–300 eV. These effects take the form of systematic sensitivity factor variations between different chemical structural environments (e.g. compound materials quantified with reference to elemental standards). Apart from a few exceptions (e.g. the 2p core levels of Zn, Ga, Ge and As in metallic environments), the XAFS should introduce no significant errors when conventional Mg Kα or Al Kα sources are used for excitation. For core‐level spectra excited with synchrotron radiation or He II radiation sources, the quantification errors can readily approach or exceed 10% at room temperature (and are expected to increase at lower temperatures). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Silver 3d x‐ray photoelectron spectroscopy (XPS) spectra were simulated with the Monte‐Carlo method using an effective energy‐loss function that was derived from a reflected electron energy‐loss spectroscopy (REELS) analysis based on an extended Landau approach. After confirming that Monte‐Carlo simulation based on the use of the effective energy‐loss function can successfully describe the experimental REELS spectrum and Ag 3d XPS spectrum, we applied Monte‐Carlo simulation to predict the angular distribution of Ag 3d x‐ray photoelectrons for different x‐ray incidence angles and different photoelectron take‐off angles. The experimental photoelectron emission microscope that we are constructing was confirmed as being close to the optimum configuration, in which the x‐ray incident angle as measured from the surface normal direction is 74° and the photoelectron take‐off angle is set normal to the surface. The depth distribution functions of the Ag 3d X‐ray photoelectrons for different energy windows suggest that the photoelectron emission microscope will exhibit greater surface sensitivity for narrower photoelectron energy windows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Combined soft X‐ray scattering and reflectometry techniques promise analysis of polymer thin film domain structure and composition without resorting to chemical modification or isotopic labeling. This work explores the capabilities of these techniques in polymer films of poly(styrene‐b‐methyl methacrylate) (P(S‐b‐MMA)). The results demonstrate that the techniques give detailed information on the domain structure of thin films using well‐known modeling procedures. Discrepancies were noted between the X‐ray optical parameters that are needed to best fit the reflectivity data to the model and the expected parameters. The sources of these discrepancies are discussed in terms of instrument configuration parameters, sample attributes, and, particularly, anisotropy of the chromophore parameters. The results show that fitting the soft X‐ray reflectivity data is much more sensitive to these X‐ray optical parameters than the soft X‐ray scattering data. Nevertheless, fits to both types of data yield quantitative measures of the polymer film's lamellar morphology that are consistent with each other and with literature values. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

6.
Two different types of plasticized poly(vinyl chloride) (PVC) used for biomedical disposable devices—extruded and injection moulded—were studied in the non‐sterilized condition and after 25 and 50 kGy of beta irradiation. The polymer surfaces were analysed by scanning electron microscopy (SEM) equipped with an x‐ray energy‐dispersive spectroscopy (XEDS) and by atomic force microscopy (AFM). The inner surface of two parts of a venous line showed a different morphology according to their original formulation (for extrusion or injection moulding process) and reacted differently on sterilization with beta irradiation. Moulded parts were affected only slightly by the radiation step, whereas the variations were bigger for the extruded parts. In order to gain the best performances for the medical devices studied, the utmost care must be taken in the sterilization step, which should be optimized as well as the other steps of the manufacturing process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Surface states of polydimethylsiloxane (PDMS) treated by plasma were investigated by x‐ray photoelectron spectroscopy and surface voltage decay. X‐ray photoelectron spectroscopy confirmed the formation of a silica‐like (SiOx, x = 3–4) oxidative surface layer. This layer increased in thickness with increasing exposure duration of plasma. Plasma exposure lowers the surface resistivity from 1.78 × 1014 to 1.09 × 1013 Ω □?1 with increasing plasma treatment time. By measuring the decay time constant of surface voltage, the calculated surface resistivity was compared with the value measured directly by a voltage–current method; good agreement between the two methods was obtained. It was observed that plasma treatment led to a decrease in the thermal activation energy of the surface conduction from 31.0 kJ mol?1 for an untreated specimen to 21.8 kJ mol?1 for a plasma‐treated specimen for 1 h. Our results allow the examination of effects of plasma on the electrical properties of PDMS. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The irradiation degradation of methamidophos in aqueous solutions by 60Co‐γ rays was investigated. The effects of absorbed doses, saturated gas, and the additive of H2O2 on the degradation were also studied. The results showed that the oxidative radical, such as ·OH, played an important role in the irradiation degradation of methamidophos; while the reductive radicals, e?aq and ·H, had no contribution to the degradation. The degradation rate of methamidophos increased with the increase of the irradiation dosage. At certain irradiation dosage, methamidophos could be degraded completely. The degradation rate of methamidophos in the solution saturated with oxygen was higher than those saturated with other gases, which reached 100% when the absorbed dose was 8 kGy. H2O2 degraded methamidophos slowly when it was used alone, but could accelerate the degradation obviously when it was used with irradiation together.  相似文献   

9.
Poly(vinyl chloride) (PVC)/bis(2‐ethylhexyl)phthalate (DOP) gels were prepared at room temperature from tetrahydrofuran solutions of PVC and DOP. PVC/DOP gels of different molecular weights at various PVC concentrations (c) were investigated with small‐angle X‐ray scattering (SAXS). The mean distance between two neighboring inhomogeneities (D) and two characteristic lengths, the intrainhomogeneity distance (d1) and interinhomogeneity distance (d2), were evaluated from Bragg's law and the distance distribution function, respectively. Both D and d2 can be expressed by a power‐law relation (e.g., D and d2c?0.5). After a period of rapid cooling to 25 °C from the sol state, the structural evolution was examined with time‐resolved SAXS measurements. An Avrami analysis with the SAXS invariant data revealed that the growth kinetics of PVC/DOP gels was one‐dimensional growth from predetermined nuclei, regardless of c. These results suggest that the PVC/DOP gels are constructed from a fibrillar structure that forms gel structures at high concentrations or low temperatures. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2340–2350, 2001  相似文献   

10.
The behaviour of the 6% aluminium–magnesium alloy (AM60) surface in zirconium or titanium fluoride aqueous acid solutions was studied. X‐ray photoelectron spectroscopy was used to investigate modifications in the surface chemistry with respect to the composition of the surface treatment solution. The surface film is composed of magnesium hydroxide and hydroxyfluoride, zirconium oxide, oxyhydroxide or oxyfluoride, titanium oxide and structural and adsorbed water. Optimal parameters leading to the formation of a zirconium‐ or titanium‐rich film were determined. A mechanism is proposed for the formation of zirconium‐ or titanium‐based films. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Effect of hindered amine light stabilizer (HALS: C944) and ultraviolet absorbers (UVAs: UV326, UV531) on the photo‐stabilities of polyester‐plasticized poly(vinyl chloride) (PVC) and polyester‐plasticized PVC/pigment yellow (PY) films were studied systematically. Both ultraviolet absorbers (UVAs) and hindered amine light stabilizer (HALS) could slow down the discoloration of polyester‐plasticized PVC and polyester‐plasticized PVC/PY films. However, the addition of UVAs protected polyester‐plasticized PVC films from being discolored and its efficiency is higher than HALS. The specific order of stabilizing effect on the photo‐oxidation is UV326 > UV531 > C944. For the optical performance, both UVAs and HALS could help to maintain the transmittance of visible light after photo‐degradation. The former could effectively adsorb ultraviolet (UV) light and resulted in lower transmittance of UV light. For the polyester‐plasticized PVC/PY systems, even though HALS and UVAs cannot help to maintain the shielding ability in high‐energy visible region after UV irradiation, they can help prevent the loss in transmittance of visible light. The surface morphology exhibited small holes on the surface of the films that contain UV531 or UV326; while large and deep holes were observed on the surface of PVC films without additives, C944‐doped and C944/PY‐doped films, indicating the higher UV‐stabilizing effect of UVAs. With regard to mechanical properties, UVAs and HALS can help to prevent the loss. Our present study systematically revealed the role of different stabilizers on the polyester‐plasticized PVC and polyester‐plasticized PVC/PY systems and paved the way to offer PVC materials with functional optical performance and desired long‐term performance using different light stabilizers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Amorphous Ni? B alloys with nominal compositions 30 at.% B and 50 at.% B were produced via electrodeposition on pure Ni polycrystalline substrates. The surfaces of the alloys were characterized with x‐ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectrometry (DSIMS). Information on the compositional variation with depth was acquired with XPS both non‐destructively, in angle‐resolved mode (ARXPS), and destructively with argon ion etching, as well as with DSIMS. Boron oxide dominates the outermost surface of the alloys. Its presence also in the bulk of the alloys is attributed to oxidation during processing, whereas the presence of hydrogen detected with SIMS is attributed to adsorption occurring during processing. The Auger parameter concept and information from the primary and secondary structure of the XPS spectrum were employed to probe the electronic changes occurring upon alloying. It is suggested that the main electronic changes occurring are hybridization of the Ni spd states with the B sp states and an apparent increase of the electron density around the Ni sites. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The construction of an x‐ray source for high‐energy XPS studies, based on Cu Kα1 radiation (hν = 8047.8 eV), is described. This source has been fitted to a Scienta ESCA300 electron spectrometer and initial results for pure iron, chromium and stainless steel are presented. The Fe 1 s and Cr 1 s core levels (at ~7112 and 5989 eV binding energy, respectively) are readily observed at good resolution along with their KLL Auger series. It is concluded that the new source shows much promise for investigation of the electronic structure of ferrous and other alloys of scientific and technological importance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Silicon carbide powder samples were heated at temperatures between 600 °C and 850 °C in wet and dry air to investigate the effect of moisture on the oxidation kinetics. Equations were derived to calculate the surface oxide thickness from both the Si 2p XPS spectra and from the Si KLL bremsstrahlung‐excited Auger spectra. The oxide film growth rates are shown to be parabolic. The film thickness formed during oxidation in wet air was larger than that in dry air for the same temperature and heating time. The activation energy for wet oxidation was found to be significantly lower than that for dry oxidation within this temperature range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study was to determine the effect of UV‐C irradiation on the Turkey oak wood surface (Quercus cerris L.). In order to compare the effect of irradiation, both untreated wood samples and those treated with steam and heat were analyzed. The steam treatments were carried out in an autoclave at 130 °C; samples were then heated in an oven for 2 h at 180 °C. The physical and chemical changes brought about in the untreated and treated wood samples by the UV‐C light were monitored by colorimetry (color changes), X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) (chemical composition) and scanning electron microscopy (SEM) (microstructure and morphology). A detailed analysis of the results indicates that the UV‐C treatment caused irreversible changes in both the chemical composition and morphology of the wood samples via photooxidation and photodegradation processes. Depending on the type of pre‐treatment used, these processes affected the wood samples differently. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Mesoporous silica SBA‐15 was synthesized and silanized with azidopropyl triethoxysilane in order to design a clickable material. Fourier transform infrared analysis permitted to prove the attachment of the azidopropylene groups to SBA‐15 resulting in the reactive and functional material N3‐SBA‐15. X‐ray photoelectron spectroscopy was used to determine the surface composition of SBA‐15. However, we unexpectedly found that the surface bound azido groups undergo X‐ray induced decomposition during the X‐ray photoelectron spectroscopy analysis resulting in the formation of nitrenes. These are very reactive groups able to intercalate C―C and C―H bonds of the propylene chains as judged from the N1s peak shape. Possible mechanisms of intercalation are suggested. C1s and N1s peaks were recorded at different exposure time. N/C, N+/N and N+/C undergo exponential decay. N+/N reaches the value of zero in less than 80 min of exposure to the X‐ray source. The N+/C decay plot was fitted with first‐order kinetics, and the decomposition kinetic constant (kdec) was found to equal to 516.4 s?1. This is a fast X‐ray induced degradation which must be considered with care when examining clickable materials with surface bound alkyl azido groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The free‐radical polymerization of methyl acrylate (MA) has been studied in the presence of a novel cyclic dixanthate under γ‐ray irradiation (80 Gy min?1) at room temperature (~28 °C), ?30 °C, and ?76 °C respectively. The resultant polymers have controlled molecular weights and relatively narrow molecular weight distributions, especially at low temperatures (i.e., ?30 and ?76 °C). The polymerization control may be associated with the temperature: the lower the temperature is, the more control there is. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of poly(methyl acrylate) (PMA) samples shows that there are at least three distributions: [3‐(MA)n‐H]+ cyclic polymers, [3‐(MA)n‐THF‐H]+, and [3‐(MA)n‐(THF)2‐H]+ linear PMAs. The relative content of the cyclic polymers markedly increases at a lower temperature, and this may be related to the reduced diffusion rate and the suppressed chain‐transfer reaction at the low temperature. It is evidenced that the good control of the polymerization at the low temperature may be associated with the suppressed chain‐transfer reaction, unlike reversible addition–fragmentation chain transfer polymerization. In addition, styrene bulk polymerizations have been performed, and gel permeation chromatography traces show that there is only one cyclic dixanthate moiety in the polymer chain. This article is the first to report the influence of a low temperature on controlled free‐radical polymerizations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2847–2854, 2007  相似文献   

18.
The self‐assembled (SA) molecular monolayers of a 3‐aminopropyltrimethoxysilane (3‐APTS) on a silicon (111) surface, and the effects of ultraviolet (UV) pre‐treatment for substrates on the assembling process have been studied using XPS and atomic force microscopy (AFM). The results show that the SA 3‐APTS molecules are bonded to the substrate surface in a nearly vertical orientation, with a thickness of the monolayer of about 0.8–1.5 nm. The SA molecular monolayers show a substantial degree of disorder in molecular packing, which are believed to result from the interactions of amine tails in the silane molecules used with surface functionalities of the substrates, and the oxygen‐containing species from the ambient. UV irradiation for silicon substrates prior to the self‐assembly reaction can enhance the assembly process and hence, significantly increase the coverage of the monolayer assembled for the substrates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A kind of bio‐based plasticizer, poly (hexanediol maleic) (MH), was synthesized using 1,6‐hexalene and maleic acid as raw materials, and it was modified by hydrosilicon‐hydrogenation reaction to improve its plasticizing efficiency. The chemical structure and plasticizing performance of MH and its modification product (MHA) were characterized by Fourier‐transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H‐NMR), X‐ray photoelectron spectroscopy (XPS), and Dynamic mechanical analysis (DMA). It was found that the hydrosilicon‐hydrogenation modification effectively improved the plasticizing efficiency of MH, reflecting on the decreased Tg and the increased elongation at break of PVC blends. The migration resistance of PVC blends was tested and analyzed by solubility parameters, which revealed that the migration stabilities of PVC blends were promoted after modification. It was verified that the hydrogen bonding interaction between the C?O group of plasticizers and α‐hydrogen of PVC exhibited in FTIR analysis was the main reason for the improvement of plasticizer performance of MH. Moreover, a new hydrogen bonding formed between Si? O? Si of MHA and the α‐hydrogen of PVC derived from XPS also caused the further improvement of plasticity for MHA.  相似文献   

20.
Anionic hydrogen‐transfer homopolymerization of N‐isopropylacrylamide (NIPAAm) was carried out using t‐BuOK as an initiator in DMF under microwave irradiation. After 100 W of microwave was irradiated to the reaction mixture at 140°C for 6 h in the temperature control mode, corresponding polymer was obtained in 10% yield. In the case of conventional oil bath heating, by contrast, corresponding polymer was not obtained in similar anionic polymerization conditions. With 100 W and 2.45 GHz of microwave irradiation, formation of the polymer was obtained. Microwave‐assisted anionic hydrogen‐transfer copolymerization of NIPPAm and acrylamide (AAm) led to the formation of thermo‐sensitive copolymers whose thermo‐sensitivity was controlled by the NIPAAm/AAm unit ratio. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2415–2419  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号