首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one‐dimensional aluminum phosphate, [NH3(CH2)2NH2(CH2)3NH3]3+ [Al(PO4)2]3—, has been synthesized hydrothermally in the presence of N‐(2‐Aminoethyl‐)1, 3‐diaminopropane (AEDAP) and its structure determined by single crystal X‐ray diffraction. Crystal data: space group = Pbca (no. 61), a = 16.850(2), b = 8.832(1), c = 17.688(4)Å, V = 2632.4(2)Å3, Z = 8, R1 = 0.0389 [5663 observed reflections with I > 2σ(I)]. The structure consists of anionic [Al(PO4)2]3— chains built up from AlO4 and PO4 tetrahedra, in which all the AlO4 vertices are shared and each PO4 tetrahedron possesses two terminal P=O linkages. The cations, which balances the negative charge of the chains, are located in between the chains and interact with the oxygen atoms through strong N—H···O hydrogen bonds. Additional characterization of the compound by powder XRD and MAS‐NMR has also been performed and described.  相似文献   

2.
A Comparison of the Crystal Structures of the Tetraammoniates of Lithium Halides, LiBr·4NH3 and LiI·4NH3, with the Structure of Tetramethylammonium Iodide, N(CH3)4I Crystals of the tetraammoniates of LiBr and LiI sufficient in size for X‐ray structure determinations were obtained by slow evaporation of NH3 at room temperature from a clear solution of the halides in liquid ammonia. The compounds crystallize in the space group Pnma (No. 62) with four formula units in the unit cell: LiBr·4NH3: a = 11.947(5)Å, b = 7.047(4)Å, c = 9.472(3)Å LiI·4NH3: a = 12.646(3)Å, b = 7.302 (1)Å, c = 9.790(2)Å For N(CH3)4I the structure was now successfully solved including the hydrogen positions of the methyl groups. N(CH3)4I: P4/nmm (No. 129), Z = 2, a = 7.948(1)Å, c = 5.738(1)Å The ammoniates of LiBr and LiI crystallize isotypic in a strongly distorted arrangement of the CsCl motif. Even N(CH3)4I has an CsCl‐like structure. Both structure types differ mainly in their orientation of the [Li(NH3)4]+ — resp. [N(CH3)4]+ — cations with respect to the surrounding “cube” of anions.  相似文献   

3.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

4.
The compound(n-Bu_4N)_2[W_2Cu_4S_8(S_2CNC_4H_8)_2]was obtained by the reaction of Bu_4NBr,(NH_4)_2WS_4,NaS_2NCC_4H_8 and CuCl in CH_3CN and CH_3OH.It crystallizes in the monoclinicspace group P2_1/c with unit cell parameters:a=21.875(5),b=16.843(4),c=17.745(5),β=101.69(6)°,V=6402(6)~3,Z=4,D_o=1.718 g·cm~(-3).The final R and R_w values converged to 0.055and 0.060 respectively.The structure consists of two‘butterfly’units[WS_4Cu_2]linked togetherby two weak Cu—S bonds and two bridging S_2CNC_4H_8 ligands.Infrared spectra gave charac-teristic absorptions at 495 cm~(-1) for W=S and 450,435,412 cm~(-1) for W—μ-S.  相似文献   

5.
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6] ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts.  相似文献   

6.
Jahn‐Teller Ordering in Manganese(III) Fluoride Sulphates. I. Crystal Structures of A2[MnF3(SO4)] (A = Rb, NH4, Cs) The three isostructural fluorosulphatomanganates(III) A2[MnF3(SO4)] (A = Rb, NH4, Cs) crystallize in space group P21/c, Z = 4. Rb2[MnF3(SO4)]: a = 7.271, b = 11.091, c = 8.776Å, β = 92.26°, R = 0.033; (NH4)2[MnF3(SO4)]: a = 7.299, b = 10.157, c = 8.813Å, β = 91.51°, R = 0.025; Cs2[MnF3(SO4)]: a = 7.365, b = 11.611, c = 9.211, β = 92.30°, R = 0.029. In the chain anions [MnF3(SO4)]2— manganese(III) is coordinated by two trans‐terminal and two trans‐bridging fluorine ligands, and by the O‐atoms of two briding sulphate ligands in trans position. The Jahn‐Teller effect induces a variety of antiferrodistortive ordering resulting in distorted [MnF4O2] octahedra with alternating elongation of F—Mn—F — and O—Mn—O — axes, respectively. Thus, only asymmetrical bridges are formed.  相似文献   

7.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

8.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

9.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

10.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

11.
Blue needle—shaped crystals of [Cu(bpy)(H2O)2(C4H4O4)]· 2H2O were obtained by slow evaporation of a methanolic aqueous solution containing a fresh Cu(C4H4O4)· 2H2O precipitate, 4, 4′—bipyridine, and ammonia. Within the complex, the six—coordinated Cu atoms are linked by bis—monodentate gauche succinate anions into chains propagating helically around the [001] axis. The chains are interconnected by 4, 4′—bipyridine ligands into a 3D framework with the crystal H2O molecules located in the channels along the [100], [010] and [110] directions. The Cu2+ ions are in distorted octahedral coordination of two nitrogen and four oxygen atoms (equatorial bonds: Cu—N 1.986(5), 2.015(5)Å; Cu—O 1.950(6), 1.954(6)Å; axial bonds Cu—O: 2.524(9), 2.539(8)Å). Furthermore, the thermal and magnetic behavior of the compound will be discussed. Crystal data: hexagonal, P61 (no. 169), a = 11.066(2)Å, c = 24.965(5)Å, V = 2647.5(8)Å3, Z = 6, R = 0.0528 and wR2 = 0.1103 for 1426 observed reflections (Fo2 > 2σ(Fo2)) out of 2170 unique reflections.  相似文献   

12.
Single crystals of [Cu(ATSC)]NH2SO3 ( 1 ) (ATSC –4‐allylthiosemicarbazide) were obtained by electrochemical synthesis using alternating current. Compound ( 1 ) crystallizes in P212121 sp. gr., a = 6.8284(2), b = 9.3054(3), c = 16.1576(11) Å, Z = 4. ATSC moiety acts as tetradentate ligand, chelating two symmetrically related copper atoms. The Cu atom possesses trigonal pyramidal coordination, formed by two sulphur atoms (one of them at the apical position), nitrogen atom and C=C bond. Sulfamate anion is associated via hydrogen bonds. By slow hydrolysis of 1 crystals of [Cu2(ATSC)2]SO4 ( 2 ) were obtained: P 1 sp. gr., a = 9.526(2), b = 12.687(2), c = 14.7340(10) Å, α = 95.119(10), β = 89.903(12), γ = 109.113(14)°, Z = 4. The asymmetric unit of 2 contains two formula units, which are related by pseudosymmetry via a glide plane a. One half of four ATSC molecules act as in 1 , the rest as tridentate ligands, which coordinate the two copper atoms in apical positions with sulfate anions. This Cu–S coordination was to date unknown. The structure of the ATSC ligands contributes to the unexpected competitiveness of C=bond in the coordination sphere of CuI inspite of strong donor atoms.  相似文献   

13.
A New Potassium Hydrogensulfate, K(H3O)(HSO4)2 — Synthesis and Structure Single crystals of the new compound K(H3O)(SO4)2 are synthesized from the system potassium sulfate/sulfuric acid. The up to day not described compound crystallizes in the monoclinic space group P21/c with the unit cell parameters a = 7.203(1) b = 13.585(2) and c = 8.434(1) Å, β = 105.54(1)°, V = 795.1 Å3, Z = 4 and Dx = 2.107 g · cm?3. There are two crystallographically different tetrahedral SO3(OH) anions. The first kind S1 tetrahedra forms dimers, whereas the second kind S2 forms infinite chains bonded via hydrogen bridges. The S1 dimers are linked to the S2 chains via oxonium ions (hydrogen bonds). Potassium is coordinated by 8 oxygen atoms which belong to four different SO3(OH) tetrahedra. These potassium oxygen polyhedra are connected by common edges forming chains running parallel z.  相似文献   

14.
The title reaction gave three known compounds (2, 3 and 4) and two new compounds, CH3SCH2(CF2)2H (5) and I(CF2)2O(CF2)2SO3S+(CH3)3 (6). The structure of 6 was confirmed by X-ray diffraction analysis. The crystals of 6 belong to monoclinic space group P21/C with a = 9.399, b = 15.651, c=10.934Å, β = 94.80° and z = 4. The structure was solved by heavy-atom method and refined by block-diagonal matrix least-squares procedure to a final R of 0.054 for 1999 independent observed reflexions. The S C bonds around the sulphur atom in trimethylsulphonium are pyramidal with the bond lengths of 1.814 Å, 1.800Å and 1.818 Å and the bond angles C-S-C of 101.06°, 101.52° and 102.53°. The distances of the sulphur atom in trimethylsulphonium to three oxygen atoms in the sulphonate radical are 3.79 Å, 3.64 Å and 3.34 Å respectively. These distances are out of the range of the normal S-O bond length. The structure consists of trimethylsulphonium cations and 5-iodo-3-oxaoctafluoropentane-sulphonate anions.  相似文献   

15.
Chloroberyllates with Nitrogen Donor Ligands. Crystal Structures of (Ph4P)[BeCl3(py)], (Ph4P)2[(BeCl3)2(tmeda)], (Ph4P)[BeCl2{(Me3SiN)2CPh}], and (Ph4P)2[BeCl4] · 2CH2Cl2 The title compounds were obtained as colourless, moisture sensitive crystals by reactions of (Ph4P)2[Be2Cl6] with pyridine, tmeda (N, N′‐tetramethylethylendiamine), or with the silylated benzamidine PhC—[N(SiMe3)2(NSiMe3)], whereas the tetrachloro beryllate was isolated as a by‐product from a solution in dichloromethane in the presence of the silylated phosphaneimine Me3SiNP(tol)3. All compounds were characterized by crystal structure determinations and by IR spectroscopy. (Ph4P)[BeCl3(Py)] ( 1 ): Space group Pbcm, Z = 4, lattice dimensions at 193 K: a = 756.2(1), b = 1739.2(2), c = 2016.3(2) pm, R1 = 0.0626. The complex anion contains tetrahedrally coordinated beryllium atom with a Be—N distance of 176.5 pm. (Ph4P)2[(BeCl3)2(tmeda)]·2CH2Cl2 ( 2 ·2CH2Cl2). Space group P1¯, Z = 1, lattice dimensions at 193 K: a = 1072.7(1), b = 1132.6(1), c = 1248.9(1) pm, α = 95.34(1)°, β = 92.80(1)°, γ = 90.81(1)°, R1 = 0.0344. Both nitrogen atoms of the tmeda molecule coordinate with BeCl3 units forming the centrosymmetric complex anion with Be—N distances of 181.3 pm. (PPh4)[BeCl2{(Me3SiN)2CPh}] ( 3 ). Space group C2, Z = 2, lattice dimensions at 193 K: a = 1255.4(2), b = 1401.9(2), c = 1085.2(2) pm, R1 = 0.0288. In the complex anion the benzamidinato ligand {(Me3SiN)2CPh} acts as chelate with Be—N distances of 174.9 pm. (Ph4P)2[BeCl4]·2CH2Cl2 ( 4 ·2CH2Cl2). Space group P2/c, Z = 4, lattice dimensions at 193 K: a = 2295.4(1), b = 982.5(1), c = 2197.2(2) pm, β = 99.19(1)°, R1 = 0.0586. 4 ·2CH2Cl2 contains nearly ideal tetrahedral [BeCl4]2— ions, like the previously described 4 ·2, 5CH2Cl2, which crystallizes in the space group P1¯, with Be—Cl distances of 203.4 pm on average.  相似文献   

16.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

17.
According to the data of quantum-chemical calculations and IR spectroscopy the trifluoro-N-(2-phenylacetyl)methanesulfonamide CF3SO2NHC(O)CH2Ph in the isolated state and in inert media exists in the form of two conformers with the syn- and antiperiplanar orientation of the C=O and N-H bonds. Its self-associates in the CCl4 solution and in molecular crystals constitute cyclic dimers formed by the NH···O=S bonds and chain dimers with the NH···O=C bonds. As a hydrogen bond donor, trifluoro-N-(2-phenylacetyl)methanesulfonamide is stronger than N-methyltrifluoromethanesulfonamide. Its pK a in methanol is 5.45, that is 5 pK units lower than for amides CF3SO2NHR and 2 pK units higher than for imide (CF3SO2)2NH.  相似文献   

18.
On Reactions of Hexachlorodiberyllate with Trimethylsilyl‐N‐dimethylamide. Crystal Structures of (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)], (Ph4P)[BeCl3(HNMe2)], and (Ph4P)(H2NMe2)[BeCl4] Reactions of bis‐tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], with trimethylsilyl‐N‐dimethylamide under different conditions lead to the novel chloroberyllate derivatives (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)] ( 1 ), (Ph4P)[BeCl3(HNMe2)] ( 2 ), and (Ph4P)(H2NMe2)[BeCl4] ( 3 ). 1 ‐ 3 were characterized by IR spectroscopy and crystal structure determinations. 1· 4CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1115.6(1), b = 2110.7(2), c = 2145.0(3) pm, α = 71.38(1)°, β = 85.66(1)°, γ = 85.24(1)°, R1 = 0.0732. The [Be2Cl5(OSiMe3)]2— ion in the structure of 1 is derived from the [Be2Cl6]2— ion by substitution of a μ‐Cl ligand by the oxygen atom of the (OSiMe3) group. The second anion, [BeCl3(Me2NSiMe3)], can be described as donor acceptor complex with a short Be—N bond of 179(1) pm. 2 : Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1063.1(1), b = 1072.0(1), c = 1238.3(1) pm, α = 87.55(1)°, β = 74.86(1)°, γ = 69.73(1)°, R1 = 0.0299. The anion of 2 forms a centrosymmetric dimer [BeCl3(HNMe2)]22— via N—H···Cl bridges of the two donor acceptor complex units with Be—N separations of 175.2(2) pm. 3 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 926.9(1), b = 2164.7(1), c = 2732.7(1) pm, R1 = 0.0495. The structure of 3 contains centrosymmetric ion quadrupoles [(Me2NH2)(BeCl4)]22— forming by N—H···Cl bridges between (Me2NH2)+ and [BeCl4]2— ions.  相似文献   

19.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

20.
Solvolysis of [RhMe(CF3SO3)2(Me3[9]aneN3)] ( 1 ) (Me3[9]aneN3 = 1, 4, 7‐trimethyl‐1, 4, 7‐triazacyclononane) in CH3CN, DMSO or pyrazole (L) leads to substitution of both trifluoromethylsulfonate ligands and formation of the cationic complexes [RhMeL2(Me3[9]aneN3)](CF3SO3)2 3—5 . In contrast, treatment of [RuCl3(Me3[9]aneN3)] ( 2 ) with Ag(CF3SO3) in a 1:3 ratio for 2h in CH3CN leads to formation of the tetranuclear complex [{RuCl3(Me3[9]aneN3)}2Ag2(CF3SO3)(CH3CN)](CF3SO3) · CH3CN ( 6 ) with a novel [(RuCl3)2Ag2] core. More forcing conditions enable the substitution of respectively one or two chloride ligands by CH3CN (reflux 18h) or DMF (85°C, 1h) to afford [RuCl2(CH3CN)(Me3[9]aneN3)](CF3SO3) ( 7 ) and [RuCl(DMF)2(Me3[9]aneN3)](CF3SO3)2 ( 8 ). The heteroleptic sandwich complex [Ru([9]aneS3)(Me3[9]aneN3)](CF3SO3)2 ( 9 ) can be prepared by reduction of 2 with Zn powder in acetone in the presence of 3 equiv. of Ag(CF3SO3), followed by addition of [9]aneS3 (1, 4, 7‐trithiacyclononane). The redox potential E°(Ru3+/Ru2+) of +1.87 V vs NHE for 9 is only —0.12 V lower than that of the homoleptic complex [Ru([9]aneS3)2]2+. Crystal structures are reported for 3 — 9 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号