首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectra of poly methyl methacrylate (PMMA) in contact with compressed CO2 were measured, to investigate effects of CO2 sorption on structure of the PMMA chain. The solubility and diffusivity of CO2 in PMMA were estimated from temporal variations of intensities of CO2 peaks. The PMMA structure was analyzed from temporal variations of vibrational energies of PMMA peaks. The results show that the vibration energies of C H stretching modes of PMMA increase with CO2 sorption, whereas those for skeletal vibration modes decrease. These energy shifts are attributed to elongational deformation of PMMA. The PMMA structure is deformed with stretching of the chains as a bundle. From energy shifts of the CO2 peaks, the size of the CO2 accommodated space between the bundles is estimated to be 1.6–1.9 nm. Furthermore, it was observed that the vibrational energies of the PMMA modes in foamed glassy PMMA differ from the values in glassy PMMA without foams. This result suggests that the local structure of the PMMA chain changes with the process of the CO2 sorption and/or foaming. The local structure of the PMMA chain might be one of the dominant factors governing the properties of cellular materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 831–842, 2008  相似文献   

2.
The ester CD3 stretching modes in a partially deuterated poly(methyl methacrylate) sample have been studied as a function of temperature and bands in the CD stretching region assigned to fundamentals in Fermi resonance with overtone/combination modes. Changes in band parameters (widths, shapes) are observed at specific temperatures. Time correlation functions and their variation with temperature were calculated for the most intense modes observed in this region of the spectrum. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fast modulation is in the sub picosecond time range, while the slower process has a relaxation time of the order of 1-10 ps. Relaxation times and other parameters are sensitive to transitions observed both below and above the glass transition, as well as at the Tg itself. The high temperature transition corresponds to a liquid-liquid transition observed in other studies and predicted by theory. The lower temperature transition appears to correspond to the Vogel-Fulcher or Kauzmann temperature. Infrared spectroscopy and band shape analysis appear to be a useful probe of these transitions.  相似文献   

3.
Although gas sorption in glassy polymers is a well‐studied phenomenon, no general microscopical model is developed which is able to describe the gas sorption in a wide temperature range using only characteristics of polymer and gas molecule. In this work, sorption isotherms and desorption kinetics of O2, Ar, and N2 for glassy poly(ethyl methacrylate) have been measured in the temperature range from 160 to 308 K. To describe both the phenomena, the model is developed which postulates that, in the frozen structure of glassy polymer, any cavities between macromolecules are the sorption sites for small molecules. The cavities of small size can expand elastically to accommodate a gas molecule. The sorption sites are considered to be the potential wells and their depths are distributed according to Gaussian law. The concentration of sorption sites, their mean depth and depths dispersion, and the frequency of molecules oscillations in the sorption sites are the only parameters which determine both the gas transport and sorption. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 288–296  相似文献   

4.
5.
Raman study of flexure stressed poly(methyl methacrylate) (PMMA) plates at the frequency range of libration mode (80 cm−1), boson peak (14 cm−1), and quasi‐elastic light scattering (QLS) (below 20 cm−1) is presented. The reversible changes in the vicinity of the Rayleigh line were attributed to partial disturbance of the midrange order due to stress‐induced redistribution of random fluctuations of orientation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1133–1136, 2000  相似文献   

6.
An in situ dielectric measurement for atactic poly(methyl methacrylate) (at‐PMMA) was performed under high‐pressure CO2 under various pressures and temperatures. The at‐PMMA has the acetate side group with a large dipole moment. In the glassy state, a local relaxation process (β‐process) can be observed using dielectric measurement. In the rubbery state, the micro‐Brownian motion of main chain (α‐process) occurs, and the β‐process changes into αβ‐process coordinated with the α‐process. The dielectric loss (ε″) spectrum of at‐PMMA in the glassy state is asymmetric because of the density fluctuation for the amorphous structure. The loss peak frequency shifted to higher frequencies, and the relaxation strength increased with increasing CO2 pressure. In the glassy state, the shape of ε″ spectrum became more symmetric with increasing CO2 pressure. These show that the molecular mobility enhanced by the plasticization effect of CO2 allows the dipolar side groups in the high‐density region to contribute to the relaxation process. We also found that the apparent activation energy decreased under high‐pressure CO2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2951–2962, 2005  相似文献   

7.
The development of a bench‐top‐type system for simultaneous measurement of X‐ray diffraction and Raman spectra has been made to investigate structural changes in the phase transitions of chain molecules such as polyethylene, n‐alkane, and so forth from various viewpoints. For the X‐ray diffraction measurement an imaging plate or a charge‐coupled device camera was used as a two‐dimensional detector. For the Raman spectral measurement a miniature Raman spectrometer was used with optical fibers for the irradiation of incident laser beams and collection of scattered signals. For example, in the heating process of the n‐C30H62 sample, the phase transition from orthorhombic‐to‐hexagonal lattices could be detected clearly by the X‐ray and Raman measurements. By comparing these two different types of data in detail, an intimate relationship between conformational disordering and rotational motion of molecular chains is detected more clearly than before. Also, similar discussion can be made for the orthorhombic‐to‐hexagonal phase transition of the geometrically constrained polyethylene sample occurring immediately below the melting point. Another example concerns the structural change in the photoinduced solid‐state polymerization of cis,cis‐diethylmuconate single crystal. From the shifts in the X‐ray reflection position and Raman frequency characteristic of the produced polymer, it was found that the molecular deformation of the polymer chains and lattice strain was induced in the early stage of the polymerization reaction. For the ferroelectric‐phase transition of vinylidene fluoride copolymer, the simultaneous measurement was made for collecting triple information of small‐angle and wide‐angle X‐ray scatterings and Raman spectra to know the relationship between the structural change in the crystal lattice and the morphological change in the lamellar stacking mode. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 495–506, 2002; DOI 10.1002/polb.10112  相似文献   

8.
This study used refractometry, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and dielectric analysis to assess the viscoelastic properties and phase behavior of blends containing 0–20% (w/w) 12‐tert‐butyl ester dendrimer in poly(methyl methacrylate) (PMMA). Dendritic blends were miscible up through 12%, exhibiting an intermediate glass‐transition temperature (Tg; α) between those of the two pure components. Interactions of PMMA C?O groups and dendrimer N? H groups contributed to miscibility. Tg decreased with increasing dendrimer content before phase separation. The dendrimer exhibited phase separation at 15%, as revealed by Rayleigh scattering in ultraviolet–visible spectra and the emergence of a second Tg in dielectric studies. Before phase separation, clear, secondary β relaxations for PMMA were observed at low frequencies via dielectric analysis. Apparent activation energies were obtained through Arrhenius characterization. A merged αβ process for PMMA occurred at higher frequencies and temperatures in the blends. Dielectric data for the phase‐separated dendrimer relaxation (αD) in the 20% blend conformed to Williams–Landel–Ferry behavior, which allowed the calculation of the apparent activation energy. The αD relaxation data, analyzed both before and after treatment with the electric modulus, compared well with neat dendrimer data, which confirmed that this relaxation was due to an isolated dendrimer phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1381–1393, 2001  相似文献   

9.
Blends of poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) (P2VP‐b‐PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP‐b‐PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self‐assembled nanostructures of the P2VP‐b‐PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1894–1905, 2009  相似文献   

10.
Three poly(4‐trimethylsilylstyrene)‐block‐polyisoprenes (TIs), the molecular weights of which were 82,000, 152,000 and 291,000 (TI‐82K, TI‐152K, and TI‐291K), were synthesized by sequential anionic polymerizations. The component polymers were a miscible pair that presented a lower critical solution temperature phase diagram if blended. The TI phase behavior was investigated with transmission electron microscopy. The order–disorder transition could be observed at a temperature between 200 °C (the ordered state) and 150 °C (the disordered state) for the block copolymer TI‐152K. The block copolymer TI‐82K presented the disordered state at 200 °C, whereas TI‐291K was in the ordered state at 150 °C. With the Flory–Huggins interaction parameter between poly(4‐trimethylsilylstyrene) and polyisoprene, which was evaluated by small‐angle neutron scattering for the block copolymers, the TI phase behavior could be reasonably explained by mean‐field theory. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1214–1219, 2005  相似文献   

11.
Poly(methyl methacrylate)–poly(acrylonitrile‐co‐butadiene) (PMMA–NBR) core–shell structured nanoparticles were prepared using a two‐stage semibatch microemulsion polymerization system with PMMA and NBR as the core and shell, respectively. The Gemini surfactant 12‐3‐12 was used as the emulsifier and found to impose a pronounced influence on the formation of core–shell nanoparticles. The spherical morphology of core–shell nanoparticles was observed. It was found that there exists an optimal MMA addition amount, which can result in the minimized size of PMMA–NBR core–shell nanoparticles. The formation mechanism of the core–shell structure and the interaction between the core and shell domains was illustrated. The PMMA–NBR nanosize latex can be used as the substrate for the following direct latex hydrogenation catalyzed by Wilkinson's catalyst to prepare the PMMA–HNBR (hydrogenated NBR) core–shell nanoparticles. The hydrogenation rate is rapid. In the absence of any organic solvent, the PMMA–HNBR nanoparticles with a size of 30.6 nm were obtained within 3 h using 0.9 wt % Wilkinson's catalyst at 130 °C under 1000 psi of H2. This study provides a new perspective in the chemical modification of NBR and shows promise in the realization of a “green” process for the commercial hydrogenation of unsaturated elastomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The sorption of compressed carbon dioxide and methane in a series of all‐aromatic poly(etherimide) (PEI) thin films is presented. The polymer films are derived from the reactions between an arylether diamine (P1) and four different dianhydrides [3,3′,4,4′‐oxydiphthalic dianhydride (ODPA), 3,3′,4,4′ biphenyltetra‐carboxylic dianhydride (BPDA), 3,3′,4,4′‐benzo‐phenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA)] that have been selected to systematically change the flexibility of the polymer backbone, the segmental mobility, and the nonequilibrium excess free volume (EFV) of the polymer. The EFV, gas sorption capacities, and sorption‐ and temperature‐induced dynamic changes in film thickness and refractive index have been investigated by spectroscopic ellipsometry. The sorption capacity depends to a great extent on the PEI backbone composition. PMDA‐P1 shows the highest carbon dioxide sorption, combined with the lowest sorption selectivity because of the predominant sorption of methane in the EFV. For ODPA‐P1, the highest sorption selectivity is obtained, while it shows little long‐term relaxations at carbon dioxide pressures up to 25 bar. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 986–993  相似文献   

13.
The crosslinking of functionalized polystyrene resins is often of critical importance in determining resin properties and performance in the application of these materials as membranes and supports. In this investigation model systems are developed for quantifying the infrared and Raman spectroscopic properties of copolymers based on poly(styrene‐co‐divinylbenzene). Analytical curves appropriate for the quantification of para‐ and metasubstituted species and pendant double bonds are reported, and corrections to previously reported spectroscopic assignments and analytical methods are made. The usefulness of these two analytical methods in characterizing radiation‐grafted films and commercial copolymers is compared, and typical characterization results are given. The relative concentrations of the species found in the grafted films are quite different from their concentrations in the grafting solution, and empirical relationships between the two are developed. In addition, the graft composition varies as a function of the base polymer film thickness and type and the penetration depth in the grafted film. Radiation‐grafted films are more highly crosslinked in their near surface regions, and thinner films are more extensively crosslinked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 59–75, 2004  相似文献   

14.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

15.
Dynamic phase transition and self‐assembly mechanism of thermosensitive poly(ethylene oxide)‐b‐poly(N‐vinylcaprolactam) (PEO‐b‐PVCL) copolymer are explored deeply. A gradual dehydration process with predominated hydrophobic interactions among copolymer chains in the phase transition process distinguishes the copolymer from homopolymer. PVCL in the inner zone is restricted and counter‐balanced by the PEO segments based on the sequence order of representative groups during the heating‐cooling cycles. Remarkably, PEO shell experiences unusual hydration process, which is first discovered. This hydrophilic shell plays as water absorption sponge layer and captures expelled water from PVCL core, accompanied by gradient distribution of water existed in the assembly structures. Peculiarly, pseudo‐linear changes of the integral area of free C?O are presented compared with inflection point in the hydrated C?O integral area, which propose that a part of hydrated C?O forms incomplete dehydrated states. During the cooling process, perfect reversibility is observed without obvious hysteresis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 385–396  相似文献   

16.
Poly(p‐phenylene sulfide) (PPS) is an important polymer of engineering interest particularly useful in the electronics and automotive industries. Normal mode analysis including phonon dispersion has been performed to understand completely the vibrational spectra of this polymer. Various characteristic features of the dispersion curves have been reported. Crossing/Repulsion between various pairs of modes at certain phase values have been explained as arising due to internal symmetry in the energy momentum space. The heat capacity is calculated as a function of temperature via density‐of‐states in the range 220–360 K. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2353–2367, 2009  相似文献   

17.
Methanol-induced opacity in poly (methyl methacrylate) (PMMA) is investigated subject to two cooling processes; furnace cooling and air cooling. The glass transition temperature of PMMA decreases with increasing time of exposure to methanol at 40–60°C and then increases during cooling, due to progressive desorption. Voids form during cooling as long as specimen temperature remains above its glass transition temperature. Since furnace cooling affords enough time for holes to expand larger than the light wavelengths, the transmittance of furnace-cooled PMMA is independent of wavelength. The transmittance of PMMA subjected to rapid cooling in the air is wavelength dependent due to scattering by holes smaller than light wavelengths. The transmittance of PMMA bearing a given weight gain of methanol (measured at absorption temperature) prior to cooling for furance cooling is lower than that for the same material subjected to air cooling. A sharp front between outer and inner regions is found in specimens removed quickly from the thermostated water bath to air at ambient temperature.  相似文献   

18.
Summary: The thermosensitive phase‐separation of poly(vinyl methyl ether) in water has been investigated by micro‐Raman spectroscopy in the presence of tetraalkylammonium bromides. The equilibrium distribution of both polymer and salts to the polymer‐rich and solvent‐rich phases was determined as a function of temperature. Tetraalkylammonium ions with longer alkyl chains associate more strongly with PVME and raise the phase‐transition temperature due to an increase in hydrophilicity.

  相似文献   


19.
The current investigation describes in detail the influence of the polymer molar mass as well as polymer‐solvent interactions on the formation of nanoparticles using the nanoprecipitation methodology. For this purpose, a homologous series of poly(methyl methacrylate)s with molar masses ranging from 7,700 to 274,000 g mol?1 was prepared. Subsequently nanoprecipitation was performed in an automated and systematic manner using liquid handling robots and a variation of different initial concentrations of the polymers and solvent/nonsolvent ratios. To elucidate information about the polymer behavior in the solvents used for the nanoprecipitation procedure (acetone, tetrahydrofuran), intrinsic viscosity measurements were performed. The nanoparticle formulations were examined in terms of particle size and size distribution, particle shape as well as zeta‐potential. The conditions for the preparation of stable and uniform nanoparticles, regardless of molar mass and hydrodynamic volume of the initial polymer, were determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Chain configuration influences phase behavior of blends of poly(methyl methacrylate) (PMMA) of different tactic configurations (syndiotacticity, isotacticity, or atacticity) with poly(L ‐lactic acid) (PLLA). Blends system of sPMMA/PLLA is immiscible with an asymmetry‐shaped UCST at ~250 °C. The phase behavior of the sPMMA/PLLA blend is similar to the aPMMA/PLLA blend that has been already proven in the previous work to exhibit similar UCST temperatures (230–250 °C) and asymmetry shapes in the UCST diagrams. On the other hand, the iPMMA/PLLA blend remains immiscible up to thermal degradation without showing any transition to UCST upon heating. The blend system with UCST, that is, sPMMA/PLLA, can be frozen in a state of miscibility by quenching to rapidly solidify from the homogeneous liquid at UCST, where the Tg‐composition relationship for the sPMMA/PLLA blend fits well with the Gordon‐Taylor Tg model with k = 0.15 and the blend's T leads to χ12 = ?0.26 for the UCST‐quenched sPMMA/PLLA blend. Both parameters (k and χ) as characterized for the frozen miscible blend suggest a relatively weak interaction between the two constituents (sPMMA and PLLA) in the blends. The interaction strength is likely not strong enough to maintain a thermodynamic miscibility when the blend is at ambient temperature or any lower temperatures below UCST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2355–2369, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号