首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crosslinking of functionalized polystyrene resins is often of critical importance in determining resin properties and performance in the application of these materials as membranes and supports. In this investigation model systems are developed for quantifying the infrared and Raman spectroscopic properties of copolymers based on poly(styrene‐co‐divinylbenzene). Analytical curves appropriate for the quantification of para‐ and metasubstituted species and pendant double bonds are reported, and corrections to previously reported spectroscopic assignments and analytical methods are made. The usefulness of these two analytical methods in characterizing radiation‐grafted films and commercial copolymers is compared, and typical characterization results are given. The relative concentrations of the species found in the grafted films are quite different from their concentrations in the grafting solution, and empirical relationships between the two are developed. In addition, the graft composition varies as a function of the base polymer film thickness and type and the penetration depth in the grafted film. Radiation‐grafted films are more highly crosslinked in their near surface regions, and thinner films are more extensively crosslinked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 59–75, 2004  相似文献   

2.
The general properties of charge‐carrier transport in disordered organic materials are discussed. The spatial correlation between energies of transport sites determined the form of drift‐mobility field dependence. The type of spatial correlation in a disordered material depends on its nature. Mobility field dependences must be different in polar and nonpolar materials. Different methods of mobility calculation from the shape of photocurrent transient were analyzed. A widely used method is very sensitive to the variation of the shape of the transient and sometimes produces results that effectively masquerade the true dependence of the mobility on the electric field or trap concentration. Arguments in favor of the better, more reliable method are suggested. Charge transport in materials containing charged traps was considered without using the isolated trap approximation, and this led to qualitatively different results. The results indicated that the effect of charged traps can hardly be responsible for the experimentally observed transport properties of disordered organic materials. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2584–2594, 2003  相似文献   

3.
This article explores the synthesis of styrene–divinylbenzene resins with different surface areas and the influence of these surface areas on their performance in the solid‐phase extraction of polar compounds from water samples. As expected, increasing the surface areas increases the retention capability of polar compounds. To improve the retention properties, we have used 4‐vinylpyridine instead of styrene in the polymerization and evaluated the influence of the sorbent polarity and surface area on the retention properties. We have found that a compromise is required between the percentage of 4‐vinylpyridine, which increases the polarity of the sorbent, and the percentage of divinylbenzene, which increases the surface area. In the solid‐phase extraction of polar compounds, the results are best for a polymer containing 2.14% N and having a surface area of 710 m2/g. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1927–1933, 2003  相似文献   

4.
A series of new poly(butylene succinate) (PBS)/layered silicate nanocomposites were prepared successfully by simple melt extrusion of PBS and organically modified layered silicates (OMLS). Three different types of OMLS were used for the preparation of nanocomposites: two functionalized ammonium salts modified montmorillonite and a phosphonium salt modified saponite. The structure of the nanocomposites in the nanometer scale was characterized with wide-angle X-ray diffraction and transmission electron microscopic observations. With three different types of layered silicates modified with three different types of surfactants, the effect of OMLS in nanocomposites was investigated by focusing on four major aspects: structural analysis, materials properties, melt rheological behavior, and biodegradability. Interestingly, all these nanocomposites exhibited concurrent improvements of material properties when compared with pure PBS. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3160–3172, 2003  相似文献   

5.
The synthesis and physical properties are described for a thermally stable liquid crystalline (LC) thermoset based on all aromatic ester units. The persistence of the liquid crystalline phase throughout the curing process was monitored with polarizing optical microscopy. The applicability of these new liquid crystalline thermosets has been evaluated for use as an adhesive for bonding metals, namely titanium. The failure of the adhesive bonds always occurs within the polymer; thus it can be inferred that bonding at the polymer-metal interface is very good. This strong interfacial bonding is attributed to low cure shrinkage and CTE matching of the underlying substrate by the LC resins. The cohesive properties and strength of the cured resin can be greatly enhanced by the addition of filler materials. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35:1061–1067, 1997  相似文献   

6.
The adhesion between a glassy polymer melt and substrate is studied in the presence of end‐grafted chains chemically attached to the substrate surface. Extensive molecular dynamics simulations have been carried out to study the effect of the areal density ∑ of tethered chains and tensile pull velocity v on the adhesive failure mechanisms. The initial configurations are generated using a double‐bridging algorithm in which new bonds are formed across a pair of monomers equidistant from their respective free ends. This generates new chain configurations that are substantially different than the original two chains such that the systems can be equilibrated in a reasonable amount of cpu time. At the slowest tensile pull velocity studied, a crossover from chain scission to crazing is observed as the coverage increases, while for very large pull velocity, only chain scission is observed. As the coverage increases, the sections of the tethered chains pulled out from the interface form the fibrils of a craze that are strong enough to suppress chain scission, resulting in cohesive rather than adhesive failure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 199–208, 2004  相似文献   

7.
The copper(I)‐catalyzed cycloaddition reaction between azides and alkynes has been employed to make metal‐adhesive materials. Copper and brass surfaces supply the necessary catalytic Cu ions, and thus the polymerization process occurs selectively on these metals in the absence of added catalysts. Alternatively, copper compounds can be added to monomer mixtures and then introduced to reducing metal surfaces such as zinc to initiate polymerization. The resulting materials were found to possess comparable or superior adhesive strength to standard commercial glues, and structure‐activity correlations have identified several important properties of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4392–4403, 2004  相似文献   

8.
Herein we develop a facile synthetic strategy for the functionalization of well‐defined polyether copolymers with control over the number and location of catechol groups. Previously, the functionalization of polyethylene oxide (PEO)‐based polymers with catechols has been limited to functionalization of the chain ends only, hampering the synthesis of adhesive and antifouling materials based on this platform. To address this challenge, we describe an efficient and high‐yielding route to catechol‐functionalized polyethers, which could allow the effects of polymer architecture, molecular weight, and catechol incorporation on the adhesive properties of surface‐anchored PEO to be studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2685–2692  相似文献   

9.
Nanoindentation is a widely used technique to characterize the mechanical properties of polymeric materials at the nanoscale. Extreme surface stiffening has been reported for soft polymers such as poly(dimethylsiloxane) (PDMS) rubber. Our recent work [J. Polym. Sci. Part B Polym. Phys. 2017 , 55, 30–38] provided a quantitative model which demonstrates such extreme stiffening can be associated with experimental artifacts, for example, error in surface detection. In this work, we have further investigated the effect of surface detection error on the determination of mechanical properties by varying the sample modulus, instrument surface detection criterion, and probe geometry. We have examined materials having Young's moduli from ∼2 MPa (PDMS) to 3 GPa (polystyrene) using two different nanoindentation instruments (G200 and TI 950) which implement different surface detection methods. The results show that surface detection error can lead to apparent large stiffening. The errors are lower for the stiffer materials, but can still be significant if care is not taken to establish the range of the surface detection error in a particular experimental situation. We have also examined the effect of pressure beneath the probe on the nanoindentation‐determined modulus of polystyrene with different probe geometries. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 414–428  相似文献   

10.
1,2,3‐Triazole‐based polymers generated from the Cu(I)‐catalyzed cycloaddition between multivalent azides and acetylenes are effective adhesive materials for metal surfaces. The adhesive capacities of candidate mixtures of azide and alkyne components were measured by a modified peel test, using a customized adhesive tester. A particularly effective tetravalent alkyne and trivalent azide combination was identified, giving exceptional strength that matches or exceeds the best commercial formulations. The addition of Cu catalyst was found to be important for the synthesis of stronger adhesive polymers when cured at room temperature. Heating also accelerated curing rates, but the maximum adhesive strengths achieved at both room temperature and high temperature were the same, suggesting that crosslinking reaches the same advanced point in all cases. Polytriazoles also form adhesives to aluminum, but copper is bound more effectively, presumably because active Cu(I) ions may be leached from the surface to promote crosslinking and adhesion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5182–5189, 2007  相似文献   

11.
The structural properties and interfacial organization of polyamides adsorbed as thin films were investigated. Polarization‐modulation infrared reflection–absorption spectroscopy was used first to identify the crystalline structure of adsorbed layers and to reveal the conformation and orientation of adsorbed chains. The influence on the structure and molecular orientation of the number of carbon atoms in the aliphatic chain of the diacid part was investigated (PA 66, 610, and 612). The effect of the substrate surface chemistry was also examined. Gold substrates are either inert or functionalized with OH groups. Grafting of the OH functions did not affect the orientation of chains that apparently lay rather parallel to the interface, whereas the crystalline morphology was dependent on the substrate chemical functionality. Knowledge of the structure and orientation of chains adsorbed at an interface was of fundamental importance for the prediction of adhesive strength, that is, the final performance of these latter depended strongly on the properties of the interface formed between the solids brought into contact. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1464–1476, 2002  相似文献   

12.
The enthalpy landscape is used to derive from first principles the departure functions that quantify structural recovery and aging in glassy materials. The departure functions are identical in form to the phenomenological Kovacs–Aklonis–Hutchinson–Ramos model departure functions, but with the important difference is that the relaxation times do not depend on the instantaneous structure (e.g., volume). This first‐principles derivation elucidates a number of experimental observations in glassy materials, including the asymmetry of approach, the effective relaxation‐rate paradox, and the different time dependences for volume and enthalpy recovery. Example results that qualitatively display these phenomena are obtained with a simple enthalpy landscape. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2302–2306, 2003  相似文献   

13.
The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide‐containing additives in a bisurea‐based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X‐ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell‐adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)‐based non‐cell adhesive additive. The bisurea‐RGD additive was cell‐adhesive in all conditions, whereas the endothelial cell‐specific bisurea‐REDV showed limited bioactive properties in all chemical nano‐environments. Also, aspecific functionality was observed for a bisurea‐SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano‐environment with peptide functionalization. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1725–1735  相似文献   

14.
Marine mussels secret protein‐based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol‐functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate‐forming adhesives, mechanically improved nano‐ and micro‐composite adhesive hydrogels, as well as smart and self‐healing materials. Finally, we review the applications of catechol‐functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 9–33  相似文献   

15.
This article describes the pore size modification and in situ surface functionalization of macroporous crosslinked poly(dicyclopentadiene), produced by chemically induced phase separation, with norbornene‐functionalized poly(ethylene glycol) telechelic oligomers. The microstructure of the open porosity materials produced with this technique consisted of agglomerated particles. The incorporation of these telechelic oligomers allowed a substantial decrease in the pore size and a related increase in the internal surface area. These functionalized oligomers acted as stabilizers around the primary particles produced by phase separation and blocked their growth so that the materials resulting from the agglomeration of these smaller particles showed finer microstructures. The resulting porous materials were characterized by scanning electron microscopy, density measurements, nitrogen adsorption, and mercury porosimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2036–2046, 2003  相似文献   

16.
Thin films of semiconducting molecular materials can be grown with a seeded supersonic molecular beam epitaxy (SuMBE), which provides unprecedented control over structural, morphological, and, therefore, functional properties. This novel technique of deposition takes full advantage of its ability to regulate the initial state of the molecular precursors in the beams and, in particular, the kinetic energy, to control the morphology, structure, and functional properties of growing films. This article reviews the state of the art of SuMBE, discussing the basic aspects of the technique and the major achievements so far. The major results obtained with respect to growth on dielectrics and metal substrates of films of oligothiophenes and pentacene and with respect to the codeposition of phthalocyanines and fullerenes are discussed and compared with the state of the art of more conventional organic molecular beam deposition. The potential impact of SuMBE in the field of π‐conjugated materials and devices is also examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2501–2521, 2003  相似文献   

17.
The structural change in the depth direction of a polyimide (UPILEX‐S) film treated in alkaline solution, which was a representative surface treatment used to form a seed layer for plating and to improve the adhesive strength, was analyzed by means of micro Fourier transform infrared attenuated total reflection (FTIR‐ATR) line analysis with gradient shaving preparation. The polyimide film was treated with KOH. The imide ring opened through the alkaline treatment, and the amide structure and carboxylic acid salt were formed. The attainment depth of this structural change was almost proportional to the treatment time, and it reached about 8 μm after a 30‐min treatment. The degree of structural change through the alkaline treatment was almost constant after it reached a considerably degraded stage, and the chemically changed region penetrated into the inner part of the film from the surface. An intermediate layer before the final degraded stage appeared in the treated layer, and its thickness increased with the treatment time. The region that was changed chemically by the alkaline treatment progressed to the inner part simultaneously and continuously as the treatment time increased. The combined use of gradient shaving preparation and micro FTIR‐ATR line analysis was found to be extremely effective for the depth profiling of organic materials. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2071–2078, 2003  相似文献   

18.
The molecular recognition properties of DNA gave rise to many novel materials and applications such as DNA biosensors, DNA‐functionalized colloidal materials, DNA origami and DNA‐based directed surface assembly. The DNA‐functionalized surfaces are used in biosensors and for programmed self‐assembly of biological, organic and inorganic moieties into novel materials. However, surface density, length, and linker design of the surface functionalized DNAs significantly influence the properties of DNA‐driven assemblies and materials. This perspective discusses the understanding of structure and dynamics of DNA immobilized on the surfaces from the theoretical point of view including recent progress in analytical theories, atomistic simulations, and coarse‐grained models. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1563–1568, 2011  相似文献   

19.
Motivated by recent experiments (Spontak, R. J.; Smith, S. D. J Polym Sci Part B: Polym Phys 2001, 39, 947) on morphological and mechanical properties of multiblock copolymers (AB)n, we theoretically elucidate the links between microscopically determined properties, such as the bridging fraction of chains, and mechanical properties of these materials. We do this by applying self‐consistent mean‐field theory to determine morphological aspects such as period and interfacial width and calculate the bridging fractions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 104–111, 2003  相似文献   

20.
The adhesion properties of high molecular weight polydimethylsiloxane adhesives are measured using 90°‐peel adhesion tests, in the high velocity range. Such adhesives undergo mainly adhesive failure in this regime. The influence of viscosity (non‐Newtonian), adhesive thickness, peeling velocity, and backing properties are studied, and new unexpected behaviors are shown. The role of rheology and peeling velocity can be explained by an extension of a model already presented for cohesive failure, by using a power‐law fluid for the adhesive. On the other hand, the influence of the backing rigidity reveals to be coupled with the adhesive elastic properties, this effect being correlated to the introduction of a new parameter in the model, the Weissenberg number for viscoelasticity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2113–2122, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号