首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical behavior of molybdate conversion coatings in various growth stages was investigated by electrochemical impedance spectroscopy and equivalent circuits. The chemical composition and microstructure were characterized by SEM/energy dispersive spectroscopy, atomic force microscopy, and AES. Neutral salt spray tests complemented the information. The results indicated that the growth process of the molybdate conversion coating was accompanied by the growth of micro cracks, consisting of three stages: in the early and middle stages, the protective property of the coatings increased with increasing treatment time and then decreased when the cracks developed in the last stage. On the basis of the observation of the microstructure and the analysis of the electrochemical impedance spectra of the coatings in various stages, a simplified growth process model of the molybdate conversion coating on hot‐dip galvanized steel was created. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Several silica‐based solutions with 50 g/l of SiO2 were prepared from sodium silicate solutions and silica sol; the silicate conversion coatings were obtained by immersing hot‐dip galvanized steel sheets in these solutions. These solutions were characterized using high‐resolution transmission electron microscopy and 29Si nuclear magnetic resonance; the morphology of the coatings was observed by SEM and atomic force microscopy while the corrosion resistance was evaluated by electrochemical measurements as well as neutral salt spray tests. The results show that the coatings obtained from the single silica sol solution had poor adhesion and the coating obtained from the sodium silicate solution with low SiO2/Na2O molar ratio was uneven. By adding the silica sol to the silicate solution with low molar ratio, uniform coatings with better protection property were obtained. According to the results of 29Si nuclear magnetic resonance spectra, the effects of the distribution of silicate anions with various polymerization degrees in the silica‐based solutions on the microstructure and corrosion resistance of the silicate coatings are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The segregation of antimony in a batch hot‐dipped regular‐spangle galvanized coating from a Zn‐0.1Al‐0.2Sb bath was investigated. The samples were characterized by using SEM/EDS. The nature of the segregation phase was determined by XRD as βSb3Zn4. Assisted with Sb? Zn phase diagram, the behavior of antimony during the solidification process of the Zn‐0.1Al‐0.2Sb coating is examined. It is suggested that the coating solidification proceeds in three stages. Owing to the cooling rate of batch hot dip galvanizing process smaller than that of continuous hot dip galvanizing line (CGL), the resulting structure of the segregation phase in current work is βSb3Zn4 instead of metastable ζSb2Zn3 for CGL. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Hot‐dipped aluminum copper with plating auxiliary KF is introduced in this work. In this study, the intermetallic layer thickness varies with dipping temperature and time in a linear relationship. The main phases are identified to be CuAl2 and K3AlF6 by means of X‐ray diffraction. The reaction equations are deduced according to the elements concentration gradient in cross section. The copper diffusion rate in liquid Al is calculated to be 1.13 × 10−12 m2/s by Fick's second law in semi‐infinite solid model, and the obtained conductivity is 1.758–1.767 × 10−2 Ω mm2/m. The results indicate that the interfacial bonding is in a good state and plating auxiliary KF aqueous solution. can significantly improve the substrate wettability. The appropriate hot‐dipping condition for the samples is 953–973 K for 4–8 s. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of dipping temperature and time on the surface chemistry of hot‐dipped galvanized steel sheets during the alkaline degreasing process is investigated. The surface chemistry was monitored with scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The results show high Al concentrations on the untreated surfaces, which are significantly reduced during alkaline degreasing. The same conclusions could be drawn for the carbon compounds that accumulate on the surface during storage. The measurements reveal a gradual reduction in surface Al as the alkali solution temperature and/or degreasing time are increased. When degreasing was conducted at 70 °C for 30 s the surface was practically free from Al, which was present only in small islands. Furthermore, the experiments showed that the thickness of the oxide film covering the surfaces before and after alkaline degreasing is approximately 20 Å. The main constituents of the film varied from ZnAl hydroxide/oxide to Zn hydroxide/oxide, before and after degreasing, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Rolling is known to alter the surface properties of aluminium alloys and to introduce disturbed near‐surface microcrystalline layers. The near‐surfaces of mostly higher alloyed materials were investigated by various techniques, often combined with a study of their electrochemical behaviour. Cross‐sectional transmission electron microscopy (TEM), after ion milling or ultramicrotomy, indicated the presence of disturbed layers characterized by a refined grain structure, rolled‐in oxide particles and a fine distribution of intermetallics. Those rolled‐in oxide particles reduce the total reflectance of rolled Al alloys. Furthermore, various depth profiling techniques, such as AES, XPS, SIMS and qualitative glow discharge optical emission spectroscopy (GD‐OES) have been used to study the in‐depth behaviour of specific elements of rolled Al alloys. Here, the surface and near‐surface of AlMg0.5 (a commercially pure rolled Al alloy with addition of 0.5 wt.% Mg) after hot and cold rolling, and with and without additional annealing is studied with complementary analytical techniques. Focused ion beam thinning is introduced as a new method for preparing cross‐sectional TEM specimens of Al surfaces. Analytical cross‐sectional TEM is used to investigate the microstructure and composition. Measuring the total reflectance of progressively etched samples is used as an optical depth profiling method to derive the thickness of disturbed near‐surface layers. Quantitative r.f. GD‐OES depth profiling is introduced to study the in‐depth behaviour of alloying elements, as well as the incorporation of impurity elements within the disturbed layer. The GD‐OES depth profiles, total reflectance and cross‐sectional TEM analyses are correlated with SEM/energy‐dispersive x‐ray observations in GD‐OES craters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A hot‐air (HA) drawing method was applied to nylon 6 fibers to improve their mechanical properties and to study the effect of the strain rate in the HA drawing on their mechanical properties and microstructure. The HA drawing was carried out by the HA, controlled at a constant temperature, being blown against an original nylon 6 fiber connected to a weight. As the HA blew against the fiber at a flow rate of 90 liter/min, the fiber elongated instantaneously at strain rates ranging from 9.1 to 17.4 s−1. The strain rate in the HA drawing increased with increasing drawing temperature and applied tension. When the HA drawing was carried out at a drawing temperature of 240 °C under an applied tension of 34.6 MPa, the strain rate was at its highest value, 17.4 s−1. The draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest strain rate had a birefringence of 0.063, a degree of crystallinity of 47%, and a dynamic storage modulus of 20 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1137–1145, 2000  相似文献   

8.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

9.
Zirconia coating film and powder obtained by the sol-gel route using zirconium n-propoxide as starting material and acid catalyst were investigated by the Perturbed Angular Correlations method, X-Ray Diffraction and Differential Scanning Calorimetry and Differential Thermal Analyses. The hyperfine interaction, measured after annealing the samples at increasing temperatures up to 1100°C, allowed to distinguish five different zirconium neighborhoods. Two of them describe rather disordered material which, on heating, crystallizes to the tetragonal phase and end finally in monoclinic zirconia. As compared with the powder, the film exhibits a minor fraction of an unidentified ordered form and a higher and more stable fraction of tetragonal phase. In addition, the tetragonal to monoclinic conversion takes place at higher temperatures and with a larger activation energy.Researcher for CONICET-ArgentinaResearcher for CICPBA-Argentina  相似文献   

10.
Hot‐stage optical microscopy was used to study the crystal morphology, nucleation, and spherulitic growth rates of poly(p‐dioxanone) (PDS) homopolymer and an 89/11 PDS/glycolide segmented block copolymer. A wide range of crystallization conditions were experimentally accessible, allowing the inspection of various morphological features and accurate estimations of characteristic growth parameters, including radial growth and nucleation rates. Although the regime analysis of the crystallization kinetics indicated no breaks in the growth rate curve, the isothermal data were in excellent agreement with the Hoffman–Lauritzen theory. Spherulitic growth rates obtained from optical measurements are compared with values of the half‐time of crystallization determined earlier by differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3073–3089, 2001  相似文献   

11.
Electrochemical synthesis of polyaniline was carried out in aqueous sulfuric acid solutions of aniline on porous p‐ and n‐silicon under galvanostatic, potentiostatic and potential pulse regimes. It is shown that the introduction of catalytic quantities of oxidants, potassium hexachloroiridate, potassium dichromate, potassium permanganate and chloranilic acid, in electrolytes accelerates the formation of polymer films and lowers the overvoltage of electrosynthesis. The resulting polymer coatings are characterized by cyclic voltammetry and IR spectroscopy. It is shown that polyaniline coatings on porous p‐ and n‐silicon electrodes are electroactive and conducting in anodic and cathodic ranges. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
A series of poly(dimethylsiloxane‐co‐diphenylsiloxane)s with different molar content of diphenylsiloxane unit (from 0.91 to 9.07 mol %) were synthesized and characterized by use of 1H NMR, gel permeation chromatography (GPC), the differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). The presence of diphenylsiloxane unit results in a decrease in the “orderness” of the crystal phase and aggrandizement in degree of lattice distortion. By calculating the sequence length of dimethylsiloxane unit of the random copolymer, it can be concluded that the maximum average sequence length of dimethylsiloxane units required for the copolymer to be amorphous is 11, and increasing the dimethylsiloxane sequence length will favour crystallization. The reduction in sequence length of dimethylsiloxane unit leads to that the three‐dimensional crystal shape is destroyed and crystal shape transforms into two‐dimensional or one‐dimensional, and finally disappeared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 72–79, 2008  相似文献   

13.
Electroless Ni–P and Ni–Cu–P coatings were passivated by chromate conversion treatment respectively. The anticorrosive performances of passivated coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The passivated Ni–Cu–P coating exhibited a high corrosion resistance with the icorr of 0.236 μA/cm,2 while the value of passivated Ni–P coating was only 1.030 μA/cm,2 indicating the passive film could improve the corrosion resistance of Ni–Cu–P coating to a significant extent. High‐resolution X‐ray photoelectron spectroscopy was used to determine the chemical states of elements detected in the passive film. Compared with passivated Ni–P coating, the passive film on Ni–Cu–P coating exhibited a higher ratio of Cr2O3 to Cr(OH)3 with the value of 72:28, which was the main factor for passivated Ni–Cu–P coating showing excellent corrosion resistance. The effect of Cu in electroless Ni–Cu–P coating on passivation process was discussed by the contrast experiment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The membrane formation of crystalline poly(ethylene-co-vinyl alcohol) (EVAL), poly(vinylidene fluoride) (PVDF), and polyamide (Nylon-66) membranes prepared by dry-cast process was studied. Membrane morphologies from crystalline polymers were found to be strongly dependent on the evaporation temperature. At low temperatures, all the casting solution evaporated into a particulate morphology that was governed by the polymer crystallization mechanism. The rise in the evaporation temperature changed EVAL membrane structure from a particulate to a dense morphology. However, as the temperature increased PVDF and Nylon-66 membranes still exhibited particulate morphologies. The membrane structures obtained were discussed in terms of the characteristics of polymer crystallization in the casting solution theoretically. At elevated temperatures the crystallization was restricted for the EVAL membrane because the increase rate in the polymer concentration was fast relative to the time necessary for growth of nuclei. Nonetheless, the time available for PVDF and Nylon-66 with stronger crystalline properties was large enough to form the crystallization-controlled particulate structure that differed in particle size only. In addition, particles in the PVDF membrane were driven together to disappear the boundary, but those in the Nylon-66 membrane exhibited features of linear grain boundary. The difference in particle morphology was attributed to the Nylon-66 with the most strongly crystalline property. Therefore, the kinetic difference in the crystallization rate of the polymer solution play an important role in dominating the membrane structure by dry-cast process.  相似文献   

15.
The effect of two factors having the most important influence on spin coating process of sol-gel films: the spin speed and the temperature (of the substrate and the applied solution) during film deposition is discussed. It is shown, that film thickness and thickness uniformity are determined by centrifugal driving force dynamics, viscous polymer rheology, solvent evaporation dynamics, and film porous microstructure.  相似文献   

16.
This work presents the fabrication of cellulose acetate (CA)–ceramic composite membranes using dip coating technique. Ceramic supports used in this work were prepared from kaolin with an average pore size of 560 nm and total porosity of 33%. The dip coating parameters studied experimentally were the concentration of CA solution (varying from 2 wt% to 8 wt%) in acetone and dipping time (varying from 30 s to 150 s). The fabricated composite membranes were characterized using scanning electron microscope, gas permeation, pure water flux and ultrafiltration (UF) experiments using bovine serum albumin (BSA). It was observed that the membrane prepared with 2 wt% and 4 wt% CA were suitable for microfiltration applications and those with 6 wt% and 8 wt% were for ultrafiltration applications. Theoretical investigation was conducted to know the macroporous and mesoporous structure of the prepared membranes using Knudsen and viscous permeability analysis of air. A resistance in series model was applied to identify different resistances responsible for the flux decline. Phenomenological models were proposed to illustrate the dependency of hydraulic resistance of membrane on the structural parameters such as average pore size, effective porosity as well as dip coating parameters like dipping time and concentration of CA. It was found that, the growth rate of CA film on the ceramic support followed exponential growth law with respect to dipping time. The total hydraulic resistance of the membrane was evaluated to be inversely proportional to the ratio of pore sizes of top layer and ceramic support. The resistance due to the CA film was found to be depended to the order of 1.73 with respect to concentration of CA. An increase in the concentration of CA was found to be more effective than dipping time to reduce the membrane pore size.  相似文献   

17.
Changes in minimum film‐formation temperature (MFFT) during storage of latexes prepared from 91:9 wt % vinylidene chloride (VDC)‐methyl methacrylate (MMA) monomer mixture by seeded batch and seeded semicontinuous emulsion polymerization were investigated, with attention centered on polymer‐crystallization behavior during storage in the dispersed state. MFFT of latex prepared by the seeded batch process rose to 47 °C, whereas that of latex prepared by seeded semicontinuous process remained below 14 °C with storage at 20 °C for 12 weeks. Infrared absorption of latexes in the dispersed state and wide‐angle X‐ray diffraction of powder polymers obtained by lyophilization of fresh and stored latexes both indicated a much greater increase in polymer crystallinity during storage with latex prepared by the seeded batch process than with that prepared by the seeded semicontinuous process. Analysis of the copolymer composition drift calculated from reactivity ratios and 1H NMR analysis indicated a wider sequence distribution and longer VDC sequences in polymer prepared by the seeded batch process than in polymer prepared by the seeded semicontinuous process. This explained the higher rate of crystallization during storage with latex prepared by the seeded batch process than with that prepared by the seeded semicontinuous process. Rising crystallinity during storage in the dispersed state is believed to have caused the MFFT rise. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 939–947, 2002  相似文献   

18.
The production of high‐solid‐content, low‐viscosity latexes is an active field in both industry and academia. The viscosity of polymer dispersions has a clear dependence on the particle size distribution (PSD). An example is the rule of thumb that a bimodal PSD enables the reduction of the viscosity with respect to monomodal systems. Despite important progress in theoretical work, not much has been done to quantitatively predict the low shear viscosity of aqueous polymer dispersions as a function of the complex PSD. In this work, the capability of a low‐shear‐viscosity equation to quantitatively account for the influence of both the PSD and the physicochemical characteristics of the dispersions is experimentally assessed. An analysis, consistent with theoretical concepts, of the data with semiempirical correlations is proposed. Next, with values of the parameters of the viscosity equation obtained experimentally, the effect of a latex with a 70% solid content on the low shear viscosity is examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3936–3946, 2004  相似文献   

19.
Microporous polyethylene (PE) hollow fiber membrane was prepared by the melt‐spinning and stretching (MS‐S) method. The effect of stretching on the structure and properties of the membrane was investigated by water contact angle measurement, field emission scanning electron microscopy (FESEM), mercury porosimetry, and N2 permeation. The tensile experiment was used to study the hard elasticity and the mechanical properties of annealed PE fibers. During the stretching process, the stretching temperature, rate, and ratio have great effects on the morphology, crystal structure, pore structure, and N2 permeation of the membrane. Experimental results showed that N2 permeation and porosity of the membrane increased with the increase in stretching temperature, rate, and ratio. The pore size decreased with increase in the stretching rate and increased with the stretching ratio. The pore size distribution was also affected by the stretching process, and was investigated in detail. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Samples of aluminium alloys AA2024‐T3 and AA7075‐T6 were treated with a chromate‐based deoxidizer, then conversion coated with a commercial cobalt‐based solution and finally sealed with a commercial vanadate‐based product. The alloy specimens were examined using scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectroscopy. The thickness of the cobalt‐based conversion coating increased rapidly up to 5 min of immersion but more slowly for longer times. Sealing resulted in penetration of vanadium through the oxide and a small increase in thickness due to the deposition of a thin sealing coating within the pores and on the external surface of the cobalt‐containing coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号