共查询到20条相似文献,搜索用时 11 毫秒
1.
Qiang Zheng Yihu Song Gang Wu Xubing Song 《Journal of Polymer Science.Polymer Physics》2003,41(9):983-992
Studies on the relationship between resistivity and dynamic rheological properties of carbon black‐filled high‐density polyethylene (CB/HDPE) composites were carried out. Change of resistivity ρ is associated with the dynamic modulus before the positive temperature coefficient/negative temperature coefficient (PTC/NTC) transition temperature. When the temperature approaches the melting point of HDPE, ρ increases rapidly with a decreasing modulus, corresponding to PTC transition. The resistivity‐dynamic viscoelasticity relationship in the PTC region can be divided into two parts in which the changes of ρ with storage modulus G′ and loss modulus G″ can be described by the scaling laws given by the critical storage modulus and loss modulus G′c and G″c; adjustable parameters ρ′1c, ρ′2c, ρ″1c and ρ″2c; and nonlinear exponents n and m, respectively. The accordance between the experimental data and the scaling functions of the dimensionless quantities (G′/G′c ? 1) and (G″/G″c ? 1) in the PTC transition region suggests that the ρ jump may be the result of a modulus‐induced percolation. G′c and G″c increase, but the four scaling resistivitis, ρ′1c, ρ′2c, ρ″1c, and ρ″2c, decrease with increasing CB concentration, implying that the microstructure change of the composites is the determinant factor for the PTC behavior and the resistivity‐dynamic modulus relationship. However, ρ′2c and ρ″2c exhibit no scaling dependence. It is suggested that a threshold concentration exists for the modulus of the composites on the basis of examining the plot of both G′c and G″c against CB concentration. The scaling laws G′ ~ Φx and G″ ~ Φy hold for the concentration dependence of the critical modulus when Φ > Φc and the estimated values of x and y are 1.10 ± 0.10 and 0.89 ± 0.29, respectively. The resistivity‐dynamic modulus can shift to form a master curve. The horizontal factors aG′ and aG″ and the vertical factors a′ and a″ are relevant to the concentration dependence of the dynamic modulus or PTC behavior. It is believed that the former would be involved in changing the mechanical microstructure formed by the complicated interaction of CB particle and polymer segments, and the latter would be involved in the overall changes of conducting a network during the PTC transition region. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 983–992, 2003 相似文献
2.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115 相似文献
3.
Jianguo Cheng Li Wang Jia Huo Haojie Yu Qiang Yang Libo Deng 《Journal of Polymer Science.Polymer Physics》2008,46(15):1529-1535
Carbon black nanoparticle grafted with poly(N‐isopropylacrylamide) (CB‐g‐PNIPAAm) was synthesized by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The temperature‐responsive behavior of CB‐g‐PNIPAAm was proved by temperature‐variable 1H NMR. A temperature‐dependent conductive composite was prepared by blending CB‐g‐PNIPAAm with epoxy resin. The relationship between temperature and resistivity of the composite was studied: the composite exhibited a negative temperature coefficient (NTC) phenomenon. Possible mechanism for the NTC phenomenon was suggested. The results showed that resultant composites can be used in intelligent temperature‐switching. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1529–1535, 2008 相似文献
4.
The electric self‐heating and conduction behaviors of a high‐density polyethylene/carbon black composite at the electric–thermal equilibrium state are studied. An equation describing the current density/electric‐field strength (J–E) characteristic is derived on the basis of an equation proposed for the self‐heating temperature as a function of the field strength. The conduction is related to the electronic tunneling and the resistor breakdown due to self‐heating that dominate the nonlinear J–E characteristic below and above a critical field strength corresponding to the J maximum, respectively. The influences of the initial structure of the percolation network and the physical state of the matrix on the conduction are also discussed on the basis of scaling arguments of the self‐heating and the nonlinear J–E characteristic with respect to the initial resistivity at various ambient temperatures from 19 to 120 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2484–2492, 2005 相似文献
5.
The resistivity relaxation behavior under applied voltages in a high‐density polyethylene/graphite nanosheet composite was investigated. The influence of applied voltages on the resistivity relaxation was measured by the collection of the electric current passing through the sample and the increasing temperature of the sample. With increments in the voltage, three distinguishable relaxation curves corresponding to different dominating mechanisms were observed. The sawed curve, corresponding to the application of a high voltage, could be attributed to the reorganization of conductive particles induced by the electric field and the destruction of the conductive network due to the thermal expansion of the high‐density polyethylene matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 860–863, 2007 相似文献
6.
Wiriya Thongruang C. Maurice Balik Richard J. Spontak 《Journal of Polymer Science.Polymer Physics》2002,40(10):1013-1025
Conductive polymer composites possessing a low percolation‐threshold concentration as a result of double percolation of a conductive filler and its host phase in an immiscible polymer blend afford a desirable alternative to conventional composites. In this work, blends of high‐density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) were used to produce ternary composites containing either carbon black (CB), graphite (G), or carbon fiber (CF). Blend composition had a synergistic effect on electrical conductivity, with pronounced conductivity maxima observed at about 70–80 wt % UHMWPE in the CB and G composites. A much broader maximum occurred at about 25 wt % UHMWPE in composites prepared with CF. Optical and electron microscopies were used to ascertain the extent to which the polymers, and hence filler particles, are segregated. Differential scanning calorimetry of the composites confirmed that the constituent polymers are indistinguishable in terms of their thermal signatures and virtually unaffected by the presence of any of the fillers examined here. Dynamic mechanical analysis revealed that CF imparts the greatest stiffness and thermal stability to the composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1013–1023, 2002 相似文献
7.
The reversible nonlinear conduction (RNC) in of high‐density polyethylene/acetylene carbon black composites with different degrees of crosslinking was studied above room temperature and below the melting point of high‐density polyethylene (HDPE). The experimental current density‐electric field strength curves can be overlapped onto a master curve, suggesting that the microscopic mechanisms for the appearance of RNC exist regardless of the ambient temperature and the crosslinking degree of the HDPE matrix. The relationship between the crossover current density and the linear conductivity can be explained in the framework of the dynamic random‐resistor‐network model. According to these results, two electron‐tunneling models are suggested to interpret the microscopic conduction behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1212–1217, 2004 相似文献
8.
A study on the correlation between electrical percolation and viscoelastic percolation for carbon black (CB) and carbon fiber (CF) filled high‐density polyethylene (HDPE) conductive composites was carried out through an examination of the filler concentration (?) dependence of the volume resistivity (ρ) and dynamic viscoelastic functions. For CB/HDPE composites, when ? was higher than the modulus percolation threshold (?G ~ 15 vol %), the dynamic storage modulus (G′) reached a plateau at low frequencies. The relationship between ρ and the normalized dynamic storage modulus (Gc′/Gp′, where Gc′ and Gp′ are the dynamic storage moduli of the composites and the polymer matrix, respectively) was studied. When ? approached a critical value (?r), a characteristic change in Gc′/Gp′ appeared. The critical value (Gc′/G′p)c was 9.80, and the corresponding ?r value was 10 vol %. There also existed a ? dependence of the dynamic loss tangent (tan δ) and a peak in a plot of tan δ versus the frequency when ? approached a loss‐angle percolation (?δ = 9 vol %). With parameter K substituted for A, a modified Kerner–Nielson equation was obtained and used to analyze the formation of the network structure. The viscoelastic percolation for CB/HDPE composites could be verified on the basis of the modified equation, whereas no similar percolation was found for CF/HDPE composites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1199–1205, 2004 相似文献
9.
A. Smedberg T. Hjertberg B. Gustafsson 《Journal of polymer science. Part A, Polymer chemistry》2003,41(19):2974-2984
This study concerns a new group of low‐density polyethylenes (LDPEs)—unsaturated LDPE. The new LDPE is a copolymer between ethylene and 1,9‐decadiene and was polymerized in a commerical high‐pressure tubular reactor. The diene copolymerized with one double bond, leaving the other unreacted as a pendant side group. This yielded a copolymer containing a higher number of vinyl groups than ordinary LDPE. Fractionation of the copolymer and determination of the number of unsaturated structures in the different fractions by Fourier transform infrared spectroscopy revealed that the diene is homogeneously incorporated along the molar‐mass distribution curve. It is also possible to obtain copolymers with a varying vinyl content, without drastic changes in molar mass or molar‐mass distribution, by a controlled addition of 1,9‐decadiene to the reactor. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2974–2984, 2003 相似文献
10.
Shape memory composites of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon nanotubes (CNTs) were introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal, and shape memory properties of the TPI/LDPE/CNTs composites were investigated in this study. In these composites, the cross‐linked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a domain of reversible shape memory behavior. We found that CNTs acted as not only reinforced fillers but also nucleation agents, which improved the crystalline degree of the TPI and LDPE portions of the composites. Compared with the properties at the other CNT doses, the mechanical properties of the TPI/LDPE composites when the CNT dose was 1 phr were improved significantly, showing excellent shape memory properties (Rf = 97.85%, Rr = 95.70%). 相似文献
11.
Andrs E. Ciolino Marcelo D. Failla Enrique M. Valls 《Journal of polymer science. Part A, Polymer chemistry》2002,40(22):3950-3958
The grafting of N‐carbamyl maleamic acid (NCMA) onto linear low‐density polyethylene (LLDPE) was carried out with different concentrations of 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy) hexane (DBPH) as an initiator. The modification process was performed in the molten state with a Brabender mixer. All the materials were characterized with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and melt rheology. The analysis of the FTIR spectra indicated that the grafting efficiency increased with the concentration of both NCMA and DBPH. The calorimetric experiments showed that the modification process did not noticeably alter the enthalpy of fusion of LLDPE, whereas the melting temperature of the modified polymers was slightly lower than that corresponding to the original LLDPE. The rheological response of the molten polymers, determined under dynamic shear flow at small‐amplitude oscillations, indicated that the modification process induced crosslinking of the chains. Both the dynamic viscosity and elastic modulus of the modified LLDPE increased with the concentration of NCMA and DBPH, showing that larger molecules were generated during the modification process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3950–3958, 2002 相似文献
12.
Ying Gao Honglian Huang Zhanhai Yao Dean Shi Zhuo Ke Jinghua Yin 《Journal of Polymer Science.Polymer Physics》2003,41(15):1837-1849
Blends of linear low‐density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high‐impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel–Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE‐g‐PS and LLDPE‐g‐HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m2. Scanning electron microscopy micrographs showed that the size of the domains decreased from 4–5 to less than 1 μm, depending on the content of added AlCl3. The crystallization behavior of the LLDPE/PS blend was investigated with differential scanning calorimetry. Fractionated crystallization phenomena were noticed because of the reduction in the size of the LLDPE droplets. The melt‐flow rate of the blending system depended on the competition of the grafting reaction of LLDPE with PS and the degradation of the blending components. The degradation of PS only happened during the alkylation reaction between LLDPE and PS. Gel permeation chromatography showed that the alkylation reaction increased the molecular weight of the blend polymer. The low molecular weight part disappeared with reactive blending. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1837–1849, 2003 相似文献
13.
M. Al‐Hussein G. R. Davies I. M. Ward 《Journal of Polymer Science.Polymer Physics》2000,38(5):755-764
A quantitative study was undertaken of the anisotropy of low‐strain mechanical behavior for specially oriented polyethylene with controlled crystalline and lamellar orientation. The samples were prepared by the die drawing of injection‐molded rods of polyethylene and annealing. This produced a parallel lamellar structure for which a simple, three‐dimensional composite laminate model could be used to calculate the expected anisotropy. Experimental data, including X‐ray strain measurements of the lateral crystalline elastic constants, showed good quantitative agreement with the model prediction. The X‐ray strain measurements confirmed that the amorphous regions exert large constraints on the crystalline phase in the lateral directions, where an order of magnitude difference was found between the measured apparent lateral crystalline compliances in the lamellar‐stack sample and the expected values for a perfect crystal. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 755–764, 2000 相似文献
14.
《先进技术聚合物》2018,29(1):407-416
Graphene nanoplatelets are promising candidates for enhancing the electrical conductivity of composites. However, because of their poor dispersion, graphene nanoplatelets must be added in large amounts to achieve the desired electrical properties, but such large amounts limit the industrial application of graphene nanoplatelets. Multi‐walled carbon nanotubes also possess high electrical conductivity accompanied by poor dispersion. Therefore, a synergistic effect was generated between graphene nanoplatelets and multi‐walled carbon nanotubes and used for the first time to prepare antistatic materials with high‐density polyethylene via 1‐step melt blending. The synergistic effect makes it possible to significantly improve the electrical properties by adding a small amount of untreated graphene nanoplatelets and multi‐walled carbon nanotubes and increases the possibility of using graphene nanoplatelets in industrial applications. When only 1 wt% graphene nanoplatelets and 0.5 wt% multi‐walled carbon nanotubes were added, the surface and volume resistivity values of the composites were much lower than those of the composites that were only added 3 wt% graphene nanoplatelets. Additionally, as a result of the synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes, the composites met the requirements for antistatic materials. 相似文献
15.
P. Stanescu J. C. Majest C. Carrot 《Journal of Polymer Science.Polymer Physics》2005,43(15):1973-1985
We predict the linear viscoelastic behavior of low‐density polyethylene from both the molecular‐weight distribution and the individual structure of each species in the sample. The “structure map” of the samples was derived from SEC measurements. This map is a three‐dimensional representation of the seniority distribution, and represents the probability of existence of a segment with seniority i in a molecule of molecular weight M. Moreover, results from the kinetics of the free radical polymerization of polyethylene show that the molecular weight of the segments increases according to their seniority. Finally, tube dilatation was generalized to the case of polydisperse samples. The solvent behavior of the relaxed segments was included through a continuous function of time that describes the instantaneous state of the entanglement network in the sample. The comparison between the theoretical predictions and the experimental data shows a good agreement over the whole experimental frequency range. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43:1973–1985, 2005 相似文献
16.
Chengzhi Chuai Mahmood Iqbal Shixiong Tian 《Journal of Polymer Science.Polymer Physics》2010,48(3):267-275
Graft copolymerization of low‐density polyethylene (LDPE) with a maleic anhydride (MAH) was performed using intermeshing corotating twin‐screw extruder in the presence of benzoyl peroxide (BPO). The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were prepared in a corotating twin‐screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microcopy (SEM). The influence of the variation in temperature, BPO and MAH concentration, and temperature on the grafting degree and on the melt viscosity was studied. The grafting degree increased appreciably up to about 0.45 phr and then decreased continuously with an increasing BPO concentration. According to the FTIR analysis, it was found that the amount of grafted MAH on the LDPE chains was ~5.1%. Thermal analysis showed that melting temperature of the graft copolymers decreases with increasing grafting degree. In addition to this, loss modulus (E″) of the copolymers first increased little with increasing grafting and then obviously decreased with increasing grafting degree. Furthermore, the results revealed that the tensile strength of the blends increased linearly with increasing PA6 content. The results of SEM and mechanical test showed that the blends have good interfacial adhesion and good stability of the phase structure, which is reflected in the mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 267–275, 2010 相似文献
17.
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low‐density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 °C. Constitutive equations were derived for the time‐dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress‐strain relations involve five material constants that were found by fitting the observations. Fair agreement was demonstrated between the experimental data and the results of numerical simulation. This study focuses on the effects of strain rate and annealing temperature on the adjustable parameters in the constitutive equations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1638–1655, 2003 相似文献
18.
At the electric–thermal equilibrium state, the nonlinear conduction behaviors of high‐density polyethylene/acetylene carbon black composites crosslinked with electron‐beam irradiation have been studied in wide ranges of electric field and ambient temperature. Critical electric field E0.5 at the global electrical breakdown and the corresponding apparent resistivity are related to the intrinsic resistivity at given ambient temperatures. The relationship between the nonlinear conduction and the intrinsic positive temperature coefficient effect of resistivity is established by a discussion of E0.5 as a function of the macroscopic resistivity temperature coefficient. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1979–1984, 2006 相似文献
19.
Ivica Janigov Frantiek Lednickýy Zuzana Ngellov Bohuslav V. Kokta Ivan Chodk 《Macromolecular Symposia》2001,169(1):149-158
Scanning electron microscopy was employed to investigate the effect of peroxide‐initiated crosslinking on behaviour of composites of low‐density polyethylene filled with wood flour. The improved wetting of the filler by the matrix and/or the increase in the matrix/filler adhesion was shown to be the main consequence of crosslinking, with the obvious influence on the physical, especially mechanical properties. 相似文献
20.
《先进技术聚合物》2018,29(1):302-309
A novel superhydrophobic surface based on low‐density polyethylene (LDPE)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic vulcanizate (TPV) was successfully fabricated where the etched aluminum foil was used as template. The etched aluminum template, consisted of countless micropores and step‐like textures, was obtained by metallographic sandpaper sanding and the subsequent acid etching. The surface morphology and the hydrophobic properties of the molded TPV surface were researched by using field emission scanning electron microscope and contact angle meter, respectively. From the microstructure observation of the superhydrophobic LDPE/EPDM TPV surface, the step‐like textures obtained via molding with etched aluminum foil template and a large number of fiber‐like structures resulted from the plastic deformation of LDPE matrix could be found obviously. The obtained TPV surface exhibited remarkable superhydrophobicity, with a contact angle of 152.0° ± 0.7° and a sliding angle of 3.1° ± 0.8°. 相似文献