首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
(E)-5,5'-Bis(5-(benzo[b]thiophen-2-yl)thiophen-2-yl)-1,1'-bis(2-ethylhexyl)-[3,3'-bipyrrolylidene]-2,2'(1H,1'H)-dione (BTBPD) has been reported by Zhang and co-workers. To further understand the charge-transporting nature of BTBPD, the density-functional theory (DFT) and the Marcus charge transfer theory were performed. The character of the frontiermolecular orbitals, reorganization energies and transfer integrals in different directions were considered in details. The results revealed that the BTBPD has high hole transport efficiency (μ = 0.29 cm2 V-1 s-1). The intermolecular π-π interaction and S…S interaction provide the holes transport channels.  相似文献   

3.
Because of the way the electrostatic potential is defined in a crystal, it is not possible to determine potential-derived charges for atoms in a crystal. To overcome this limitation, we present a novel method for determining atomic charges for a molecule in a crystal based on a fit to the electric field at points on a surface around the molecule. Examples of fits to the electric field at points on a Hirshfeld surface, using crystal Hartree-Fock electron densities computed with a DZP basis set are presented for several organic molecular crystals. The field-derived charges for common functional groups are transferable, and reflect chemical functionality as well as the subtle effects of intermolecular interactions. The charges also yield an excellent approximation to the electric field surrounding a molecule in a crystal for use in cluster calculations on molecules in solids.  相似文献   

4.
等离激元纳米结构因其通过改变纳米结构的尺寸、形貌和组成成分,可以在紫外-可见-近红外范围内实现对光的操控从而提高能量利用率而受到人们的广泛关注.在光的激发下,等离激元纳米结构可以产生高能热电子,并驱动光化学反应,但其利用效率较低.因此,如何提升热电子的激发效率成为了一个亟待解决的关键问题.本工作制备了三维壳层隔绝银纳米粒子载金(3DAgSHINs-Au)超结构,以对巯基苯胺(pATP)为探针分子,结合原位表面增强拉曼光谱技术和三维有限时域差分法研究不同电场强度对等离激元诱导的热电子激发效率的影响.实验结果显示电场强度越强,热电子激发效率越高, pATP催化速率越快.此外,带内跃迁比带间跃迁更有利于热电子的激发.本研究有助于人们理解电场强度如何影响热电子的激发效率.  相似文献   

5.
Calculations are presented that show that vacancies can trap charge-transfer (CT) states in anthracene, acetanilide and hexahydro-1,3,5-trinintro-1,3,5-triazine (RDX). Such trapping provides a mechanism for photoconductivity quenching by geminate recombination, and for optical damage and detonation by concentrating optical or mechanical energy stored in CT states.  相似文献   

6.
Photovoltaic phenomenon in tetracene and pentacene layers evaporated under the same conditions onto a glass substrate and provided with the same couple of electrodes is investigated. Comparison of the results obtained for both organic materials makes it possible to conclude that in spite of differences in mechanisms of charge carrier generation, the values of photovoltaic parameters are very similar.  相似文献   

7.
A key parameter dictating the rate of charge transfer (CT) is reorganization energy (λ ), an energy associated with geometry changes during hole/electron transfer. We show that “ironing” the inter‐ring dihedral angles of oligothiophenes via proper substitutions or insertions (e.g., ‐OR, ‐F or ‐C≡C‐), decreases the λ and thus promotes CT according to Marcus equation. Our results demonstrate, to attain a smaller λ , extending oligomer length is only significant if the flattened backbone structure is realized. Of great interest is that external electric fields, which are ubiquitous in electronic devices yet commonly overlooked in the computation of λ , can have a significantly greater impact than conventional substitutions. It is important to emphasize, the responses of λ to external fields is system‐dependent. Compared to fused‐ring conjugated systems, single‐bond connected thiophenes are more sensitive to external fields. Fx lowers the λ (552 meV) of quaterthiophene by almost 80% at the intensity of 1 V/Å, down to a value (125 meV) which is even lower than that of pentacene (154 meV) and rubrene (219 meV) at the same level of theory. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Pentacene derivative 6,13‐dichloropentacene (DCP) is one of the latest additions to the family of organic semiconductors with a great potential for use in transistors. We carry out a detailed theoretical calculation for DCP, with systematical comparison to pentacene, pentathienoacene (PTA, the thiophene equivalent of pentacene), to gain insights in the theoretical design of organic transport materials. The charge transport parameters and carrier mobilities are investigated from the first‐principles calculations, based on the widely used Marcus electron transfer theory and quantum nuclear tunneling model, coupled with random walk simulation. Molecular structure and the crystal packing type are essential to understand the differences in their transport behaviors. With the effect of molecule modification, significant one‐dimensional π‐stacks are found within the molecular layer in PTA and DCP crystals. The charge transport along the a‐axis plays a dominant role for the carrier mobilities in the DCP crystal due to the strong transfer integrals within the a‐axis. Pentacene shows a relatively large 3D mobility. This is attributed to the relatively uniform electronic couplings, which thus provides more transport pathways. PTA has a much smaller 3D mobility than pentacene and DCP for the obvious increase of the reorganization energy with the introduction of thiophene. It is found that PTA and DCP exhibit lower HOMO (highest occupied molecular orbital) levels and better environmental stability, indicating the potential applications in organic electronics. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
10.
We design a new type of molecular diode, based on the organoimido derivatives of hexamolybdates, by exploring the rectifying performances using density functional theory combined with the non‐equilibrium Green’s function. Asymmetric current–voltage characteristics were obtained for the models with an unexpected large rectification ratio. The rectifying behavior can be understood by the asymmetrical shift of the transmission peak observed under different polarities. It is interesting to find that the preferred electron‐transport direction in our studied system is different from that of the organic D ‐bridge‐A system. The results show that the studied organic–inorganic hybrid systems have an intrinsically robust rectifying ratio, which should be taken into consideration in the design of the molecular diodes.  相似文献   

11.
The charge transport characteristics of organic semiconductors are one of the key attributes that impacts the performance of organic electronic and optoelectronic devices in which they are utilized. For improved performance in organic photovoltaic cells, light-emitting diodes, and field-effect transistors (FETs), efficient transport of the charge carriers within the organic semiconductor is especially critical. Characterization of charge transport in these organic semiconductors is important both from scientific and technological perspectives. In this review, we shall mainly discuss the techniques for measuring the charge carrier mobility and not the theoretical underpinnings of the mechanism of charge transport. Mobility measurements in organic semiconductors and particularly in conjugated polymers, using space-charge-limited current, time of flight, carrier extraction by linearly increasing voltage, double injection, FETs, and impedance spectroscopy are discussed. The relative merits, as well as limitations for each of these techniques are reviewed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
The prediction of substance‐related charge‐transport properties is important for the tayloring of new materials for organic devices, such as organic solar cells. Assuming a hopping process, the Marcus theory is frequently used to model charge transport. Here another approach, which is already widely used for exciton transport, is adapted to charge transport. It is based on the spectral overlap of the vibrational donor and acceptor spectra. As the Marcus theory it is derived from Fermi's Golden rule, however, it contains less approximations, as the molecular vibrations are treated quantum mechanically. In contrast, the Marcus theory reduces all vibrational degrees of freedom to one and treats its influence classically. The approach is tested on different acenes and predicts most of the experimentally available hole mobilities in these materials within a factor of 2. This represents a significant improvement to values obtained from Marcus theory which is qualitatively correct but frequently overestimates the mobilities by factors up to 10. Furthermore, the charge‐transport properties of two derivatives of perylene bisimide are investigated. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
A new conduction mechanism in polyethylene and epoxy resin is presented and discussed in this article. This mechanism is based on the presence of charge pulses that can be seen as solitons (solitary waves) crossing dielectrics with mobility 4–5 orders of magnitude larger than that of conventional charge carriers. The nature of this new process that is characterized by charge pulses with such high mobility requires a completely different mechanism for transport to be theorized with respect to that, mediated by trap sites, of conventional charge carriers. It is speculated in this article that injection and transport of positive and negative solitons occurs through the coupling of space charge and relaxation processes involving molecular chains, but of different nature for negative or positive solitons. Observation of space charge shows the existence of such solitons for at least two families of materials, polyethylene, and epoxy resin. In addition, it has been observed that nanostructuration, which is able to modify mechanical properties, affects also the presence and size of the solitons. In this article, we not only seek to demonstrate the existence of this new phenomenon, but attempt to provide an explanation and a kind of qualitative–quantitative model, which shows that the assumption of a pulsive conduction mechanism mediated by chain relaxation processes, transport in free volume (for negative solitons), and reverse‐tunneling between macromolecular chains (positive solitons) seems to fit quite well with the experimental observations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed.  相似文献   

15.
密度泛函理论研究边链对苯并菲电荷传输的影响   总被引:1,自引:0,他引:1  
采用密度泛函理论在B3LYP/6-31G**水平上,根据电子转移的半经典模型对含有炔基的不同软链的苯并菲化合物分子的电荷传输性质进行研究。研究表明,所有目标化合物均有利于苯并菲的电荷传输。其中,直接在苯并菲刚性环上引入酰胺基(-CO-NH-)有利于提高正电荷的传输,而间隔基为酯基的单取代化合物的正负电荷传输性质均比较良好。在苯并菲上单取代的分子明显比其双取代、三取代的分子正电荷传输性质好。  相似文献   

16.
Recently, we have proposed a series of hydrocarbon molecular surfaces (A.F. Jalbout, L. Adamowicz, Mol Phys 2006, 19, 3101), which had a hydrogen bonded network of OH groups on one side of the surface and hydrogen atoms on the opposite side. The addition of these OH groups increases the dipole moment of the system allowing for excess electrons to attach to the surface in dipole‐bound (DB) anion states. We have used this principle to study the interaction of the DB anions formed from the surfaces and an argon atom. The resulting anions are shown to be stable with respect to electron detachment. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
Fast electrons emitted by a beta radiation source produce ion pairs between a two eletrode arrangement full with argon or nitrogen at ambient pressure. Ions created there were identified with the help of an ion mobility spectrometer. The production of reactive species by field accelerated electrons was studied in argon.  相似文献   

18.
The α, β, and δ polymorphs of [TTF][TCNE] (TTF=tetrathiafulvalene; TCNE=tetracyanoethylene) exhibit a new type of long, multicenter bonding between the [TTF]δ+ and [TCNE]δ? moieties, demonstrating the existence of long, hetero‐multicenter bonding with a cationicδ+???anionicδ? zwitterionic‐like structure. These diamagnetic π‐[TTF]δ+[TCNE]δ? heterodimers exhibit a transfer of about 0.5 e? from the TTF to the TCNE fragments, as observed from experimental studies, in accord with theoretical predictions, that is, [TTFδ+???TCNEδ?] (δ?0.5). They have several interfragment distances <3.4 Å, and a computed interaction energy of ?21.2 kcal mol?1, which is typical of long, multicenter bonds. The lower stability of [TTF]δ+[TCNE]δ? with respect to typical ionic bonds is due, in part, to the partial electron transfer that reduces the electrostatic bonding component. This reduced electrostatic interaction, and the large interfragment dispersion stabilize the long, heterocationic/anionic multicenter interaction, which in [TTFδ+???TCNEδ?] always involves two electrons, but have ten, eight, and eight bond critical points (bcps) involving C? C, N? S, and sometimes C? S and C? N components for the α, β, and δ polymorphs, respectively. In contrast, γ‐[TTF][TCNE] possesses [TTF]22+ and [TCNE]22? dimers, each with long, homo‐multicenter 2e?/12c (c=center, 2 C+4 S) [TTF]22+ cationic+???cationic+ bonds, as well as long, homo‐multicenter 2e?/4c [TCNE]22? anionic????anionic? bonding. The MO diagrams for the α, β, and δ polymorphs have all of the features found for conventional covalent C? C bonds, and for all of the previously studied multicenter long bonds, for example, π‐[TTF]22+ and π‐[TCNE]22?. The HOMOs for α‐, β‐, and δ‐[TTF][TCNE] have 2c C? S and 3c C? C? C orbital‐overlap contributions between the [TTF]δ+? and [TCNE]δ? moieties; these are the shortest intra [TTF???TCNE] separations. Thus, from an orbital‐overlap perspective, the bonding has 2c and 3c components residing over one S and four C atoms.  相似文献   

19.
20.
Bis(triisopropylsilylethnyl) pentacene (TIPS pentacene) was synthesized to increase its solubility in common liquid solvents and, at the same time, enhance the π–π stacking between neighboring acenes in the crystallized state in comparison with unmodified pentacene. Hot-stage microscopy experiments revealed that during heating voids develop along the long axis of the TIPS pentacene films {along the [210] direction/parallel to the (120 ) planes} and crystals overlap along the short axis {along the [120 ] direction/parallel to the (210) planes}. From molecular mechanics simulations, the predominant twin boundaries of (120 ) and commonly observed cracking planes of (120), (120 ), and (210) had relatively low surface energies in comparison with planes with similar Miller indices. Organic thin-film transistors with TIPS pentacene as the active layer were fabricated, and the mobility values decreased from 0.4–1.0 cm2/V s before cracking to ∼0.2 cm2/V s after cracking. To maintain the high charge carrier mobility of TIPS pentacene devices, these cracks should be avoided. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3631–3641, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号