首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure, impact strength, and rheological properties of blends consisting of high‐density polyethylene (HDPE) and maleated poly (ethylene‐octene) (POEg) and/or calcium carbonate (CaCO3) were investigated. The improvement of impact strength of HDPE/POEg was limited due to the high miscibility between them. The introduction of CaCO3 had a negative impact on the toughness of the matrix because of the poor interfacial adhesion. In ternary blends of HDPE/POEg/CaCO3, an elastomer layer was formed around CaCO3 particles due to the strong interaction between POEg and CaCO3, which improves the HDPE‐CaCO3 interfacial strength and the toughness of the blends. A significant enhancement of dynamic viscosity, storage modulus, and the low‐shear viscosity were observed as the results of the high miscibility of HDPE with POEg and strong interaction between POEg and CaCO3. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3213–3221, 2005  相似文献   

2.
The effect of temperature on dynamic viscoelastic measurements of miscible poly (vinyl chloride) (PVC)/ethylene‐vinyl acetate–carbon monoxide terpolymer (EVA‐CO) and immiscible PVC/high‐density polyethylene (HDPE) and PVC/chlorinated polyethylene (CPE) molten blends is discussed. PVC plasticized with di(2 ethyl hexyl) phthalate (PVC/DOP) and CaCO3 filled HDPE (HDPE/CaCO3) are also considered for comparison purposes. Thermorheological complexity is analyzed using two time–temperature superposition methods: double logarithmic plots of storage modulus, G′, vs. loss modulus, G″, and loss tangent, tan δ, vs. complex modulus, G*, plots. Both methods reveal that miscible PVC/EVA‐CO and PVC/DOP systems are thermorheologically complex, which is explained by the capacity of PVC to form microdomains or crystallites during mixing and following cooling of the blends. For immiscible PVC/HDPE and PVC/CPE blends the results of log G′ vs. log G″ show temperature independence. However, when tan δ vs. log G* plots are used, the immiscible blends are shown to be thermorheologically complex, indicating that the morphology observed by microscopy and constitued by a PVC phase dispersed in a HDPE or CPE matrix, is reflected by this rheological technique. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 469–477, 2000  相似文献   

3.
The present work concerns with the investigation of the effect of dispersion of Silica (SiO2) nanoparticles (NPs) in host ferroelectric liquid crystal (FLC) KCFLC10S on the dielectric and electro-optical properties and ultraviolet-visible (UV-VIS) absorption spectra of the pristine and dispersed systems. We have found that the dispersion of SiO2 NPs in the host FLC strongly influences the various properties of dispersed systems. No evidence of aggregates and clumps in the dispersed system has been observed. Due to SiO2 NPs dispersion, a rapid decrease in dielectric permittivity ε’, increase in conductivity σ with frequency, increase in spontaneous polarisation Ps and decrease in switching time with bias voltage have been observed. Based on the absorption spectra, we have also made an attempt to link the electro-optical and dielectric response with the mechanism of FLC–NPs interactions.  相似文献   

4.
To combine the advantages of a biopolymer with hydrotalcite in an enzyme immobilization system, the intercalation polymerization was used to prepare poly(acrylic acid‐co‐acrylamide)/hydrotalcite (PAA‐AAm/HT) nanocomposite hydrogels using sodium methyl allyl sulfonate as intercalation agent. Transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy results revealed that sodium methyl allyl sulfonate chains entered into the interlayer of HT, the interaction between them has taken place, and HT was dramatically exfoliated into nanoscale and homogeneously dispersed in the PAA‐AAm matrix. Transmission electron microscopy and cryo scanning electron microscope results showed that dried hydrogels were regular spherical particles, and swollen hydrogels revealed homogeneous porous network structures. Then, PAA‐AAm/HT nanocomposite hydrogels were used to immobilize carbonic anhydrase (CA), and the CO2 hydration activities of free enzyme and immobilized enzyme were evaluated. Results showed that immobilized CA retained the majority of the enzyme activity. The reason may be the formation of a microenvironment almost all of which is composed of free water inside the porous network structures. Therefore, the immobilized CA is of great potential in the removal of trace CO2 from the closed spaces. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3232–3240, 2009  相似文献   

5.
A Haake torque rheometer equipped with an internal mixer has been used to study the influence of microscale calcium carbonate (micro‐CaCO3) and nanoscale calcium carbonate (nano‐CaCO3) on the fusion, thermal, and mechanical characteristics of rigid poly(vinyl chloride) (PVC)/micro‐CaCO3 and PVC/nano‐CaCO3 composites, respectively. The fusion characteristics discussed in this article include the fusion time, fusion temperature, fusion torque, and fusion percolation threshold (FPT). The fusion time, fusion temperature, and FPT of rigid PVC/calcium carbonate (CaCO3) composites increase with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. In contrast, the fusion torque of rigid PVC/CaCO3 composites decreases with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. The results of thermal analysis show that the first thermal degradation onset temperature (Tonset) of rigid PVC/micro‐CaCO3 is 7.5 °C lower than that of PVC. Meanwhile, the glass‐transition temperature (Tg) of rigid PVC/micro‐CaCO3 is similar to that of PVC. However, Tonset and Tg of PVC/nano‐CaCO3 composites can be increased by up to 30 and 4.4%, respectively, via blending with 10 phr nano‐CaCO3. Mechanical testing results for PVC/micro‐CaCO3 composites with the addition of 5–15 phr micro‐CaCO3 and PVC/nano‐CaCO3 composites with the addition of 5–20 phr nano‐CaCO3 are better than those of PVC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 451–460, 2006  相似文献   

6.
The toughening mechanisms of polypropylene filled with elastomer and calcium carbonate (CaCO3) particles were studied. Polypropylene/elastomer/CaCO3 composites were prepared on a twin‐screw extruder with a particle concentration of 0–32 vol %. The experiments included tensile tests, notched Izod impact tests, scanning electron microscopy, and dynamic mechanical analysis. Scanning electron microscopy showed that the elastomer and CaCO3 particles dispersed separately in the matrix. The modulus of the composites increased, whereas the yield stress decreased with the filler concentration. The impact resistance showed a large improvement with the CaCO3 concentration. At the same composition (80/10/10 w/w/w), three types of CaCO3 particles with average diameters of 0.05, 0.6, and 1.0 μm improved the impact fracture energies comparatively. The encapsulation structure of the filler by the grafting elastomer had a detrimental effect on the impact properties because of the strong adhesion between the elastomer and filler and the increasing ligament thickness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1113–1123, 2005  相似文献   

7.
Bismaleimide‐modified novolak resin/silsesquioxane (BMI‐PN/SiO3/2) nanocomposites were prepared by the sol–gel process. The reactions in the sol–gel synthesis were characterized by Fourier transform infrared spectroscopy. It was found by field emission scanning electron microscopy and atomic force microscopy studies that the particle size of the dispersed phase was about 100 nm, and there existed particle aggregates. The proportion of bismaleimide in the BMI‐PN/SiO3/2 nanocomposites showed an important effect on the thermal properties of the composites, as demonstrated by thermogravimetric analysis and dynamical mechanical analysis. Major improvements in the glass‐transition temperature and the heat resistance of the material were achieved by the introduction of the nanosized SiO3/2 inorganic phase, and the modulus at high temperatures was improved too. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2599–2606, 2003  相似文献   

8.
Assembled structures of calcium carbonate (CaCO3) nanocrystals have been examined for polymer/CaCO3 thin-film composites synthesized through a self-organization process inspired by biomineralization. For the crystallization of CaCO3, a thin-film matrix of chitosan has been used as a polymeric substrate. When the matrix is immersed into a supersaturated aqueous solution of CaCO3 containing 1.4 × 10−3 wt % poly(aspartate) (PAsp), thin-film crystals of CaCO3 are formed spontaneously. Three kinds of disklike films have been observed under a polarizing optical microscope. Electron diffraction analyses of each film have revealed that one is aragonite, displaying radial orientation of the c axes, and the others are vaterite, exhibiting different orientations. Detailed observation by scanning electron microscopy has clarified that these films are assemblies of crystalline particles 10–20 nm in size. The thin-film composites have been obtained over a PAsp concentration range of 4.4 × 10−4 to 1.0 × 10−2 wt %. Vaterite formation becomes dominant when the concentration of PAsp is increased. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5153–5160, 2006  相似文献   

9.
Polypropylene (PP) was modified with elastomer or CaCO3 particles of two different sizes (1 μm and 50 nm) in various volume fractions. The dispersion morphology and mechanical properties of the two systems were investigated as functions of the particle size and volume fraction of the modifier. The brittle‐to‐tough transition occurred when the matrix ligament thickness was less than the critical ligament thickness, which was about 0.1 μm for the PP used here, being independent of the type of modifier. At the same matrix ligament thickness, the improvement of the toughness was obviously higher with the elastomer rather than with CaCO3, but adding CaCO3 increased the modulus of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1656–1662, 2004  相似文献   

10.
The membrane properties of a Nafion surface can be modified by ion implantation with N+ or F+. The results are presented of an X-ray photoelectron spectroscopy (XPS) study of implanted surfaces. For the interpretation of the XPS spectra, calculations using a semiempirical quantum chemical formalism (AM1) have been applied, in conjunction with a charge-potential model, to predict the C1s core electron binding energies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 551–556, 2004  相似文献   

11.
The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO_3blends are investigated. Not all HDPE can be toughened by CaCO_3 particles. The ability of thematrix to yield plays a fundamental role in determing whether HDPE can be toughened or not.There exists a critical matrix toughness (I_(sc)≈45J/m) below which HDPE can not be toughenedobservably by CaCO_3 particle at given average size, and above which the critical matrix ligamentthickness (τ_?) is proportional to matrix impact strength.  相似文献   

12.
We have demonstrated that unsubstituted thiophene can be polymerized by Fe3+‐catalyzed oxidative polymerization inside nanosized thiophene monomer droplets, that is, nanoreactors, dispersed in aqueous medium, which can be performed under acidic solution conditions with anionic surfactant. Besides, we proposed a synthetic mechanism for the formation of the unsubstituted polythiophene nanoparticles in aqueous medium. This facile method includes a FeCl3/H2O2 (catalyst/oxidant) combination system, which guarantees a high conversion (ca. 99%) of thiophene monomers with only a trace of FeCl3. The average particle size was about 30 nm, within a narrow particle‐size distribution (PDI = 1.15), which resulted in a good dispersion state of the unsubstituted polythiophene nanoparticles. Hansen solubility parameters were introduced to interpret the dispersion state of the polythiophene nanoparticles with various organic solvents. The UV–Visible absorption and photoluminescence (PL) spectrum were measured to investigate the light emitting properties of the prepared unsubstituted polythiophene nanoparticle emulsions. According to non‐normalized PL analysis, the reduced total PL intensity of the polythiophene nanoparticle emulsions can be rationalized by self‐absorption in a wavelength range less than 500 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2097–2107, 2008  相似文献   

13.
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007  相似文献   

14.
The effect of migration of calcium carbonate (CaCO3) nanoparticles on the breakup dynamics of Ethylene-Propylene-Diene Monomer (EPDM) droplets in Polypropylene (PP) matrix during melt extrusion was investigated in situ. The breakup process of EPDM droplets was sped up dramatically when the migration of CaCO3 nano-particles from dispersed phase to matrix was introduced to PP/EPDM melts. It was found that both the total breakup time and the shape stability of slender EPDM droplets decreased with the increase of CaCO3 concentration. Both the maximum value in equivalent diameter d and aspect ratio AR of EPDM droplets were also reduced by increasing the composition of CaCO3 nanoparticles. Results were discussed in consideration of interfacial tension and migration of CaCO3 nanoparticles. Reduction in interfacial tension is mainly responsible for the improved breakup process in the two-step composites with CaCO3 nanoparticles (<2 wt%). Higher composition of CaCO3 (≥2 wt%) induced the CaCO3 aggregates in the EPDM phase. These aggregates acted as stress concentration when the EPDM droplets break up.  相似文献   

15.
The unsaturated hyperbranched polyester (UH20) based on Boltorn™ H20 (H20) end‐capped with methacrylate groups and carboxylic acid groups was introduced to treat calcium carbonate (CaCO3) as a new type of surface modifier by a wet‐coating technique. The interaction between CaCO3 and modifier was proven to be due to the ionic character by FT‐IR after the extraction with acetone. The maximum amount of tightly bonded UH20 modifier was determined to be around 9% by thermogravimetric analysis (TGA). The incorporation of CaCO3 coated with UH20 into high‐density polyethylene (HDPE) decreased the mechanical performance of HDPE/CaCO3 composite in comparison with CaCO3 coated with stearic acid. In the presence of a small amount of dicumyl peroxide (DCP), a greatly improvement of the notched impact strength as well the tensile strength of HDPE/CaCO3 coated with UH20 composite was obtained. An enhanced effect in the mechanical performance of the composite between CaCO3 coated with UH20 and HDPE matrix in the existence of DCP was suggested. Moreover, the morphological structures of impact fracture surface of the HDPE/CaCO3 composites were studied by scanning electron microscopy (SEM) to confirm the possible mechanism for explaining the improvement of mechanical properties of the composite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
12‐Hydroxydodecanoate (HD) anions were intercalated, via an ion‐exchange procedure, onto a Mg/Al hydrotalcite‐like compound with the formula [Mg0.65Al0.35(OH)2](NO3)0.35·0.56H2O. The obtained intercalate, characterized by chemical and thermal analyses, X‐ray powder diffraction, and Fourier transform infrared spectroscopy, had the formula [Mg0.65Al0.35(OH)2](NO3)0.08(HD)0.28·0.56H2O and an interlayer distance of 2.27 nm. Structural considerations indicated that the charge‐balancing HO? (CH2)11? COO? anions were accommodated in the interlayer region as a monofilm of partially interdigitated alkyl chains in a trans planar conformation and bearing the alcoholic group. The organically modified hydrotalcite was used to prepare novel composites based on poly(?‐caprolactone) (PCL) with different procedures: (1) solvent casting, (2) ring‐opening polymerization of ?‐caprolactone, and (3) blending of precursors consisting of a PCL intercalated oligomer with a high‐molecular‐weight PCL. Microcomposites were obtained by the solvent casting of a mixture of a high‐molecular‐weight PCL and the modified hydrotalcite. The ring‐opening polymerization of ?‐caprolactone initiated by the ? OH groups of the alkyl chains intercalated in the hydrotalcite led to hybrid materials in which a low‐molecular‐weight PCL was in part intercalated into the modified hydrotalcite. Nanocomposites containing exfoliated hydrotalcite were obtained through the mixing, in different weight ratios, of hybrids consisting of PCL oligomers and modified hydrotalcite with a commercial high‐molecular‐weight PCL. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2281–2290, 2005  相似文献   

17.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

18.
The effect of the dissolved state of poly(vinyl alcohol) (PVA) molecules in water on the color development due to PVA–iodine complexes was investigated at each given PVA and iodine concentration using two kinds of syndiotactic-rich PVA (S-PVA) which are unstable in water because of the formation of intermolecular hydrogen bonds and form the complex easily. In the reaction mixtures prepared by mixing PVA solutions and an iodine solution, the color development was constant and independent of standing time of the PVA solution before the addition of iodine up to a certain time, after which it decreased with the standing time. The color development obtained with use of the PVA solution allowed to stand for a fixed time was higher for S-PVA with a lower s-(diad)%. In the case of the reaction mixture prepared by dissolving PVA in an iodine solution, the color development was higher for S-PVA with a higher s-(diad)%. The initial ratio of the I5/I3 and the rate of decrease in the ratio of I5/I3 were larger than those in the preceding case. The color development decreased for the PVA with an s-(diad) % of 58, whereas it increased for the PVA an s-(diad) % of 61.3 with increasing propanol content, an inhibitor of gelation. From these results, the aggregates of PVA molecules have been assumed to play an important role in forming the complexes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1701–1709, 1997  相似文献   

19.
Cerium oxide‐filled high density polyethylene (HDPE) composites for microwave substrate applications were prepared by sigma‐blend technique. The HDPE was used as the matrix and the dispersion of CeO2 in the composite was varied up to 0.5 by volume fraction, and the dielectric properties were studied at 1 MHz and microwave frequencies. The variations of thermal conductivity (keff), coefficient of thermal expansion (αc) and Vicker's microhardness with the volume fraction of the filler were also measured. The relative permittivity (εeff) and dielectric loss (tan δ) were found to increase with increase in CeO2 content. For 0.4 volume fraction loading of the ceramic, the composite had εeff = 5.7, tan δ = 0.0068 (at 7 GHz), keff = 2.6 W/m °C, αc = 98.5 ppm/°C, Vicker's microhardness of 18 kg/mm2 and tensile strength of 14.6 MPa. Different theoretical approaches have been used to predict the effective permittivity, thermal conductivity, and coefficient of thermal expansion of composite systems and the results were compared with the experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 998–1008, 2010  相似文献   

20.
High‐density polyethylene (HDPE) and nanosilica nanocomposites were prepared for SiO2 content up to 15 wt%. Microstructural characterization evidenced a homogenous distribution of silica aggregates with a mean size increasing with the filler content finally resulting in a rheological percolation between 7.5 and 10 wt%. Nanoparticles did not induce any significant impact on the matrix crystallinity but led to a real improvement on elastic properties accompanied with a large embrittlement above the percolation threshold. The effect of annealing near HDPE melting temperature was studied. Differential scanning calorimetry, X‐ray diffraction, and small‐angle X‐ray scattering analyses showed a significant change in the HDPE microstructure after annealing at 125°C. A large increase in the crystallinity (from 68 to 76%) and a clear improvement of Young's modulus (by 55%) were observed prior to polymer degradation. A valuable impact of silica particles on thermal stability was also obvious regarding the evolution of elastic properties for extended exposure times (850–1,200 h). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 535–546  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号