首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synthesis and Characterization of New Cyclic and Cage‐like Indium — Phosphorus and Indium — Arsenic Compounds The reaction of InEt3 with H2ESiiPr3 initially yields the cyclic compound [Et2InP(H)SiiPr3]2 ( 2 ). 2 appears as a mixture of cis and trans isomers and has been characterized by 31P‐NMR spectroscopy, IR spectroscopy, and mass spectrometry. 2 decomposes in solution under elimination of ethane during a few days to form [EtInPSiiPr3]4 ( 3 ) with a cage‐like structure. The analogous arsenic compound [EtInAsSiiPr3]4 ( 4 ) can be prepared by reaction of InEt3 with H2AsSiiPr3. Central structural motif of 3 and 4 is an In4E4 heterocubane like structure (E = P, As), whereas the reaction of InEt3 with H2PSiMe2Thex (Thex = CMe2iPr) yields [EtInPSiMe2Thex]6 ( 5 ) with a hexagonal prismatic structure.  相似文献   

3.
The reaction of AlCl3 with Li2PR (R = SiiPr3, SiMeiPr2) in a mixture of heptane and ether yields in the polycyclic compounds [(AlCl)43‐PR)2(μ‐PR)2(Et2O)2]( 1a : R = SiiPr3; 1b : SiMeiPr2) with a ladder‐shaped Al4P4 core. The coordination sphere of the outer aluminium atoms in these compounds is completed by ether ligands. In contrast, the reaction of AlCl3 with Li2PSiiPr3 in pure heptane yields in the formation of the hexagonal prismatic compound [(AlCl)63‐PSiiPr3)6]( 2 ). 1 and 2 were characterized by single crystal X‐ray diffraction analysis as well as by 31P{1H} and 27Al NMR spectroscopy. The structure determining effect of the solvent can be rationalized by quantumchemical calculations, which also show that the hexagonal prismatic structure is the most stable of the investigated oligomers in absence of ether.  相似文献   

4.
Reaction of NaAlH4 with Primer Silylphosphines and Silylarsines: Synthesis and Crystal Structure of a Cyclic Sodium Phosphanylalanate and a Polycyclic Sodium Arsanylalanate The reaction of sodium aluminium hydride with H2PSiMe3 in the molar ratio 1:4 yields the compound [H2Al{P(SiMe3)2}2Na(dme)2] ( 1 ). Central structural motif of this compound in a four‐membered AlP2Na ring. Surprisingly the phosphorus atoms in the ring wear two exocyclic silylgroups each. From the reaction of NaAlH4 with the primer silylarsine H2AsSiiPr3 in THF the ionic compound 2 can be obtained. In this compound cyclic [(H2Al)3(AsSiiPr3)3]3‐ anions coordinate the sodium counter‐ions by the hydride ligands as well as by the arsenic atoms.  相似文献   

5.
6.
7.
Dimethyl Earth‐Metal Heterocycles – Derivatives of Trimethyl‐silylated, ‐germylated, and ‐stannylated Phosphanes and Arsanes – Syntheses, Spectra, and Structures The organo earth‐metal heterocycles [Me2MIII–E(MIVMe3)2]n with MIII = Al, Ga, In; E = P, As; MIV = Si, Ge, Sn and n = 2, 3 (Me = CH3) have been prepared from the dimethyl metal compounds Me2MIIIX (X = Me, H, Cl, OMe, OPh) and the pnicogen derivatives HnE(MIVMe3)3–n (n = 0, 1) according to known preparation methods. The mass, 1H, 13C, 31P, 29Si, 119Sn nmr, as well as the ir and Raman spectra have been discussed comparatively; selected representatives are characterized by X‐ray structure analyses. The dimeric species with four‐membered (E–MIII)2 rings are isotypic and crystallize in the triclinic space group P1, the trimer [Me2In–P(SnMe3)2]3 with a strongly puckered (In–P)3‐ring skeleton crystallizes with two formula units per cell in the same centrosymmetric triclinic space group.  相似文献   

8.
9.
Syntheses and Reactions of Aluminium Alkoxide Compounds Al(OcHex)3 ( 1 ) can be synthesized by the reaction of Al with cyclohexanol under evolving of H2 in boiling xylene. [Li{Al(OCH2Ph)4}] ( 2 ) was obtained by treatment of PhCH2OH with a 1 M solution of LiAlH4 in THF. [{(THF)Li}2{Al(OtBu)4}Cl] ( 3 ) is the result of the reaction of four equivalents of LiOtBu on AlCl3 in THF. 3 is the educt for the reactions with the Lewis‐acids InCl3 and FeCl3 in THF leading to the metalates [{(THF)2Li}2{Al(OtBu)4}] · [MCl4] [M = In ( 4 ), Fe ( 5 )]. The attempt to react InCl3 with four equivalents of LiOtBu leads to only one isolated and characterized product, the complex [Li4(OtBu)3(THF)3Cl]2 · THF ( 6 · THF), which can also be synthesized by the treatment of LiCl with three equivalents of LiOtBu in THF. 1–6 · THF were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 , which is tetrameric in solution, is the first structurally characterized example of the proposed trimer form of aluminium alkoxides [ROAl{Al(OR)4}2] with a central trigonal bipyramidal coordinated Al atom. 2 forms a coordination polymer with a distorted tetrahedral coordination sphere of Li and Al, running along [100]. The trinuclear structure skeleton [{(THF)2Li}2{Al(OtBu)4}]+ is still present in the isotypical metalates 4 and 5 . The counter ions [MCl4] possess nearly Td symmetry. The remarkable structural motif of 6 · THF are two heterocubanes [Li4(OtBu)3(THF)3Cl] dimerized by Li–Cl bonds.  相似文献   

10.
Open‐Chain and Cyclic As‐functionalized Stannylarsines: Synthesis, Reactions, and Structure tBu3SnAsH2 ( 1 ) reacts with MeLi to form the lithium compound tBu3SnAsHLi which reacts with tBu2SnCl2 to give the AsH‐functionalized bis(arsino)stannane tBu2Sn(AsHSntBu3)2 ( 2 ). Metallation of diarsadistannetane (tBu2SnAsH)2 ( 3 ) with two equivalents of tBuLi yields the dilithio compound (tBu2SnAsLi)2 which reacts with Me3SiCl or Me3SnCl to give the corresponding As,As′‐bis‐substituted diarsadistannetanes (tBu2SnAsSiMe3)2 ( 4 ) and (tBu2SnAsSnMe3)2 ( 5 ), respectively. The novel compounds are characterized by NMR (1H, 119Sn) and mass spectroscopy, ring compounds 4 and 5 further by X‐ray structure analysis. In the solid state both ring compounds contain molecules with planar tin‐arsenic rings and two trans‐configurated Me3Si‐ or Me3Sn‐ring substituents (space group P21/n (No. 14), Z = 2).  相似文献   

11.
12.
13.
14.
Intramolecularly Sulfur stabilized Aluminum and Gallium Alkyl Derivatives The intramolecularly sulfur stabilized organoaluminum and organogallium compounds Me2Al(CH2)3SEt ( 1 ), Me2Ga(CH2)3SEt ( 2 ), MeClAl(CH2)3SEt ( 3 ), MeClGa(CH2)3SEt ( 4 ), Cl2Al(CH2)3SEt ( 5 ), and Cl2Ga(CH2)3SEt ( 6 ) are synthesized from Me2MCl, MeMCl2, and MCl3 (M = Al, Ga), respectively, and ClMg(CH2)3SEt. The reaction of 5 and of 6 with BrMg(CH2)5MgBr yields (CH2)5Al(CH2)3SEt ( 7 ) and (CH2)5Ga(CH2)3SEt ( 8 ), respectively. AlCl3 and GaCl3 react with two as well as three equivalents of ClMg(CH2)3SEt forming ClAl[(CH2)3SEt]2 ( 9 ) and ClGa[(CH2)3SEt]2 ( 10 ) as well as Al[(CH2)3SEt]3 ( 11 ) and Ga[(CH2)3SEt]3 ( 12 ), respectively. The compounds were characterized by elemental analyses, mass spectroscopy, 1H, 13C, and 27Al NMR investigations as well as 6 by single crystal X‐ray structure analysis.  相似文献   

15.
16.
The First Four‐Membered Al/P Ring formed by three Phosphorus Atoms nd one Aluminium Atom: Synthesis and Crystal Structure of [Cp*Al(P t Bu)3] (AlCp*)4 reacts with (PtBu)3 at 90 °C to form the new cyclic Al/P‐compound 1,2,3‐tris‐t‐butyl‐tri‐phospha‐4‐pentamethylcyclopentadienylaluminetane: [Cp*Al(PtBu)3] ( 1 ). 1 has been characterised by single crystal x‐ray diffraction, 31P{1H}‐NMR spectroscopy as well as mass spectroscopy. It consists of a folded four‐membered AlP3‐ring and differs therefore from all Al/P‐compounds known so far, which always show alternating Al‐P‐positions. 1 crystallises in the orthorhombic spacegroup P212121, the lattice constants are: a = 9.067 pm, b = 16.212 pm, c = 17.449 pm, α = β = γ = 90°.  相似文献   

17.
Syntheses and Structures of η1‐Phosphaallyl, η1‐Arsaallyl, and η1‐Stibaallyl Iron Complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] (E = P, As, Sb) The reaction of equimolar amounts of [(η5‐C5Me5)(CO)2Fe–E(SiMe3)2] ( 1 a : E = P; 1 b : As; 1 c : Sb) and diphenylketene afforded the η1‐phosphaallyl‐, η1‐arsaallyl‐, and η1‐stibaallyl complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] ( 2 a : E = P; 2 b : As; 2 c : Sb). The molecular structures of 2 b and 2 c were elucidated by single crystal X‐ray analyses.  相似文献   

18.
Preparation, Properties, and Molecular Structures of Dimethylaminomethyl Ferrocenyl Compounds of selected Elements of Group 13 and 14 Dimethylmetalchlorides of gallium and indium react with dimethylaminomethylferrocenyllithium (FcNLi) to give the corresponding dimethylmetaldimethylaminomethylferrocenes 1 and 2 [Me2MFcN; M=Ga, In]. In a similar manner dialkylmetaldichlorides of germanium and tin yield the expected chlordialkylmetaldimethylaminomethylferrocenes 3 – 5 [R2(Cl)MFcN; M=Ge; R = Me ( 3 ), M=Sn; R=Me ( 4 ), Ph ( 5 )]. In a reaction of Me3Al and Me2AlCl with dimethylaminomethylferrocene the formation of the 1 : 1 adducts 7 and 8 could be observed. All compounds were characterised by 1H and 13C nmr spectroscopy. The molecular structures of 1 , 3 , 4 and 7 were determined. 3 and 4 build in contrast to 1 monomeric molecules with chelat rings as a result of the M–N coordination. Compound 7 consist of monomeric molecules with 4 coordinated Al atoms.  相似文献   

19.
The deoxygenative conversion of carbon dioxide to carbon monoxide is promoted by the aluminyl anion [Al(NONAr)]? (NONAr=[O(SiMe2NAr)2]2?, Ar=2,6‐iPr2C6H3). The reaction proceeds via the isolable monoalumoxane anion [Al(NONAr)(O)]?, containing a terminal aluminum‐oxygen bond. This species reacts with a second equivalent of carbon dioxide to afford the carbonate [Al(NONAr)(CO3)]?, and with nitrous oxide to generate the hyponitrite anion, [Al(NONAr)(κ2O,O′‐N2O2)]?.  相似文献   

20.
Bisaminophosphanes – Synthesis, Structure, and Reactivity Different pathways for the synthesis of bis(alkylamino)phosphanes RP(N(H)R′)2 are described. t‐BuP(N(H)‐ Dipp)2 (Dipp = 2,6‐i‐Pr2–C6H3) was structurally characterized by single crystal X‐ray diffraction. The reactivity of the compounds was examplarily investigated using t‐BuP(N(H)t‐Bu)2. Its reaction with Me3Al and R2AlH (R = Me, Et, i‐Bu) in 1 : 1 and 1 : 2 stoichiometrie yield monosubstituted compounds of the type t‐BuP(N(H)t‐Bu)(N(AlR2)t‐Bu).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号