首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses and Crystal Structures of New Alkali Metal Rare‐Earth Tellurides of the Compositions KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) and CsLnTe2 (Ln = Nd) Of the compounds ALnQ2 (A = Na, K, Rb, Cs; Ln = rare earth‐metal; Q = S, Se, Te) the crystal structures of the new tellurides KLaTe2, KPrTe2, KNdTe2, KGdTe2, RbCeTe2, RbNdTe2, and CsNdTe2 were determined by single‐crystal X‐ray analyses. They all crystallize in the α‐NaFeO2 type with space group R3¯m and three formula units in the unit cell. The lattice parameters are: KLaTe2: a = 466.63(3) pm, c = 2441.1(3) pm; KPrTe2: a = 459.73(2) pm, c = 2439.8(1) pm; KNdTe2: a = 457.83(3) pm, c = 2443.9(2) pm; KGdTe2: a = 449.71(2) pm, c = 2443.3(1) pm; RbCeTe2: a = 465.18(2) pm, c = 2533.6(2) pm; RbNdTe2: a = 459.80(3) pm, c = 2536.5(2) pm, and CsNdTe2: a = 461.42(3) pm, c = 2553.9(3) pm. Characteristics of the α‐NaFeO2 structure type as an ordered substitutional variant of the rock‐salt (NaCl) type are layers of corner‐sharing [(A+/Ln3+)(Te2—)6] octahedra with a layerwise alternating occupation by the cations A+ and Ln3+.  相似文献   

2.
Zintl‐Compounds with Gold and Germanium: M3AuGe4 with M = K, Rb, Cs Black, brittle single crystals of M3AuGe4 with M = K, Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and germanium powder at T = 1120 K. The structures of the compounds (space group Pmmn, Z = 2, K3AuGe4: a = 6.655(1)Å, b = 11.911(2)Å, c = 6.081(1)Å; Rb3AuGe4: a = 6.894(1)Å, b = 12.421(1)Å, c = 6.107(1)Å; Cs3AuGe4: a = 7.179(1)Å, b = 12.993(2)Å, c = 6.112(2)Å) were determined from X‐ray single‐crystal diffractometry data. The semiconducting compounds contain equation/tex2gif-stack-2.gif[AuGe4]‐chains with P4‐analogous Ge4‐tetrahedra which are connected by μ2‐bridging gold atoms in a distorted tetrahedral Ge‐coordination.  相似文献   

3.
We report about the LMTO-ASA band structure, ELF and COHP calculations for a number of alkali metal rare earth tellurides of the formulas ALnTe4 (A=K, Rb, Cs and Ln=Pr, Nd, Gd) and KLn3Te8 (Ln=Pr, Nd) to point out structure-properties relations. The ALnTe4 compounds crystallize in the KCeSe4 structure type with Te ions arranged in the form of 4.32.4.3 nets, in which interatomic homonuclear distances indicate an arrangement of isolated dumbbells. This could be verified by the COHP and ELF calculations, both of which revealed isolated [Te2] units. But in contrast to the ionic formulation as A+Ln3+ ([Te2]2−)2, which can be deduced from this observation, the band structure calculations for KPrTe4, KNdTe4, RbNdTe4 and CsNdTe4 reveal metallic conductivity. This behavior was verified for KNdTe4 by resistivity measurements performed by a standard four-probe technique. We explain these results by an incomplete carryover of electrons from the rare earth cation onto tellurium due to covalent bonding leaving parts of the Te-Te ppπ* antibonding states unoccupied. On the other hand the calculations suggest insulating behavior for KGdTe4 resulting from a complete filling of the Te-Te ppπ* antibonding states due to the increased stability of the half filled 4f shell. The ALn3Te8 compounds crystallize in the KNd3Te8 structure type, a distorted addition-defect variant of the NdTe3 type with 44 Te nets. As polyanionic fragments L-shaped [Te3]2− and infinite zig-zag chains 1[Te4]4− are observed (with interatomic homonuclear distances in the range 2.82-3.00 Å), which are separated from each other by distances in the range 3.27-3.49 Å. Again COHP calculations made evident that these latter interactions are secondary. Within the infinite zig-zag chains 1[Te4]4− the Te ions at the corners of the chain have a higher negative charge than the linear coordinated ones in the middle. KPr3Te8 and KNd3Te8 are semiconductors, verified for the latter by resistivity measurements.  相似文献   

4.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

5.
Seven 1,4‐phenylenebisphosphonates of monovalent ions, A(HO3PC6H4PO3H2) (A = Li, K, Rb, Cs, Tl, Ag and NH4), were synthesized and characterized by single‐crystal X‐ray diffraction, spectroscopic and thermal methods. These compounds and the reported sodium analogue have four structure types. The sodium compound, one‐dimensional lithium compound and pillared‐layered cesium compounds have different structure types, whereas the potassium, rubidium, thallium, ammonium and silver compounds have a pillared ladder‐like structure. They undergo initial thermal decomposition in the range of 120–270 °C. Moreover, the single crystal X‐ray structure of 1,4‐phenylenebisphosphonic acid was determined.  相似文献   

6.
On the Crystal Structure of Rb2C2 and Cs2C2 By reaction of rubidium or caesium solved in liquid ammonia with acetylene AC2H with A = Rb, Cs was obtained, which was subsequently converted into the binary acetylide A2C2 in vacuum at temperatures of 520 K (Rb2C2) and 470 K (Cs2C2) using a surplus of the respective alkali metal. The crystal structures of the very air sensitive compounds were solved and refined by a combination of both neutron and X‐ray powder diffraction data. Rb2C2 as well as Cs2C2 coexist in two modifications. The hexagonal modification (P 6 2m, Z = 3) crystallises in the known Na2O2 structure type with two crystallographic independent sites for the C22– dumbbells. For the orthorhombic modification (Pnma, Z = 4) a new structure type was found, which is related to the PbCl2 structure type with ordered C22– dumbbells occupying the Pb sites. Temperature dependent investigations between 4 K and the decomposition temperature by the means of neutron and X‐ray powder diffraction resulted in a very complex dynamic disorder of the C2 dumbbells, which is still not completely understood. The frequencies of the C–C stretching vibration determined by the help of Raman spectroscopy fit nicely to the results obtained for other alkali metal acetylides and alkali metal hydrogen acetylides. These results seem to indicate that the electronegativity of the alkali metal has a strong influence on the frequency of the C–C stretching vibration.  相似文献   

7.
Preparation and Crystal Structure of CsTe4 CsTe4 results from a melting reaction at 570°C in sealed quartztubes. The starting materials Cs and Te in the molar ratio 1:4 are produced in a first step by controlled decomposition of the CsN3 from mixtures of CsN3 and Te (1:4) at 350°C. CsTe4 is monoclinic, space group P21/c, with a = 7.857(1) Å, b = 7.286(1) Å, c = 14.155(2) Å, β = 93.83(1)°, and Z = 4. The tellurium atoms form a two-dimensional puckered layer built of from pseudo-trigonal-bipyramidal, T-shaped units Te4?. The central tellurium atom of this unit may be considered as a pseudo iodine. The compound is compared with other tellurides MTen having some like that unexpected principles of connection.  相似文献   

8.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln = Sm, Gd), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group P21/c. They contain Ln3+ ions, which are coordinated by [H2I2O10]4— anions forming two‐dimensional, cationic networks. These are separated by perchlorate ions, forming a layered structure.  相似文献   

9.
Jahn‐Teller Ordering in Manganese(III) Fluoride Sulfates. II. Phase Transition and Twinning of K2[MnF3(SO4)] and 1D Magnetism in Compounds A2[MnF3(SO4)] (A = K, NH4, Rb, Cs) According to single‐crystal X‐ray investigations, K2[MnF3(SO4)] crystallizes at low temperature, like the isostructural Rb, NH4, and Cs analogues in space group P21/c, Z = 4, e.g. at 100 K with a = 7.197, b = 10.704, c = 8.427Å, β = 91.84°. Below about 300 K, the crystals are found to be [001] axis twins. Using a new integration method for area detector records, nearly complete intensity data could be gained allowing for structure refinements of similar quality as for untwinned crystals (e.g. at 100 K: wR2 = 0.050, R = 0.020 for all reflections). With rising temperature, the monoclinic angle approaches continuously 90°. For an ordering parameter Δβ = β?90° a 2nd‐order phase transition is observed with an exponent λ = 0.17. At the transition temperature of 280 K resulting from the fit, the monoclinic structure changes – with delay – to orthorhombic with the minimum super‐group Pnca, a = 7.243, b = 10.763, c = 8.457Å, R = 0.024, as found in an early structure determination at room temperature by Edwards 1971. In the chain‐like [MnF3(SO4)]2? anions, manganese(III) is octahedrally coordinated by two trans‐terminal and two trans‐bridging fluorine ligands as well as by the O atoms of two trans‐bridging sulfate ligands. At low temperature, the octahedral elongation by the Jahn‐Teller effect alternates between a F–Mn–F and an O–Mn–O axis (antiferrodistortive ordering). All bridges are asymmetric. From about 320 K on they become symmetric. Due to 2D dynamical Jahn‐Teller effect all octahedra appear compressed. All compounds A2[MnF3(SO4)] show 1D antiferromagnetism. The antiferrodistortive Jahn‐Teller order at low temperatures and the small bridge angles explain the much lower magnetic exchange energies and their inverse relation to the bridge angles as compared with other fluoromanganate(III) chain compounds with the usual ferrodistortive ordering.  相似文献   

10.
Crystal Structure of KPr3Te8 Out of the compounds ALn3Q4 (A = Na, K, Rb, Cs; Ln = Lanthanoid; Q = S, Se and Te) the crystal structure of the telluride KPr3Te8 was determined by X‐ray single‐crystal structure analysis. Single crystals of the compound were synthesized by a flux technique with K2Te3 as flux after separation of the K2Te3 excess by extraction with absolute dimethylformamide (DMF). The compound crystallizes monoclinically in space group P121/c1 with the lattice parameters a = 1390.58(7) pm, b = 1291.06(6) pm, c = 900, 18(5) pm and β = 99, 264(6)° isotypically to KNd3Te8. Characteristics in the crystal structure of KPr3Te8 are L‐shaped units of three tellurium atoms [Te3]2— as well as infinite zig‐zag chains of tellurium atoms [Te4]4—. The shortest interatomic distances in the chain are alternating only slightly with 298 and 300 pm and are in the range of partial bonds. Both structure elements are arranged in almost planar layers and are interconnected with each other by secondary interactions revealing interatomic distances in the range of 327 to 349 pm. The crystal structure of KPr3Te8 can be regarded as a addition‐defect variant of the binary NdTe3 structure type. This finding is illustrated by group‐subgroup relations in form of a so called Bärnighausen family tree.  相似文献   

11.
Alkali Metal Tetraethinylozincates and ‐cadmates AI2M(C2H)4 (AI = Na — Cs, M = Zn, Cd): Synthesis, Crystal Structures, and Spectroscopic Properties By reaction of AIC2H (AI = Na — Cs) with divalent zinc and cadmium salts in liquid ammonia the alkali metal tetraethinylozincates and ‐cadmates AI2M(C2H)4 (M = Zn, Cd) were accessible as polycrystalline powders. While Na2M(C2H)4 is amorphous to X‐rays and the crystal structure of Cs2Zn(C2H)4 could not be solved up to now, the remaining compounds are isotypic to the already known crystal structures of the potassium compounds, as was deduced from powder diffraction with X‐rays and synchrotron radiation. They crystallise in the tetragonal space group I41a, contain [M(C2H)4]2— tetrahedra and show structural relationships to the scheelit and anatas structure types. Raman spectroscopic investigations confirm the existence of tetrahedral fragments with C‐C triple bonds in the alkali as well as in the amorphous alkaline earth metal compounds AIIM(C2H)4 (AII = Mg — Ba, M = Zn, Cd).  相似文献   

12.
A series of heteropentanuclear oxalate‐bridged Ru(NO)‐Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ‐ox)(NO)}4], where Ln=Y ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] ( 1 ) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1 , 2 , and 5 were in addition analyzed by X‐ray crystallography, 1 by Ru K‐edge XAS and 1 and 2 by 13C NMR spectroscopy. X‐ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2? are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ‐ox)(NO)}4]5? (Ln=Y, Dy). While YIII is eight‐coordinate in 2 , DyIII is nine‐coordinate in 5 , with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium‐lanthanide complexes 2 – 5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC‐5) and compared with those obtained for the previously reported Os(NO)‐Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 )). Complexes 2 – 5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6 – 9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP‐MS data, indicating five‐ to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.  相似文献   

13.
Synthesis and Structure of Hydrogen Sulfates of the Type M(HSO4)(H2SO4) (M = Rb, Cs and NH4) From the binary systems M2SO4/H2SO4 (M = Rb, Cs, NH4), three new hydrogen sulfates of the type M(HSO4)(H2SO4) could be synthesized and structural characterized. The rubidium and caesium compounds are isotypic whereas NH4(HSO4)(H2SO4) is topologically very similar to both. All three compounds crystallize with nearly identical cell parameters [Rb: a = 7.382(1), b = 12.440(2), c = 7.861(2), β = 93.03(3); Cs: a = 7.604(1), b = 12.689(2), c = 8.092(2), β = 92.44(3); NH4: a = 7.521(3), b = 12.541(5), c = 7.749(3), β = 92.74(3)], in the monoclinic space group P21/c, There exist two kinds of SO4-tetrahedra: HSO4? anions (S1) and H2SO4-molecules (S2). The HSO4? anions form hydrogen bridged zigzag chains. In the case of the Rb and Cs compounds, the H2SO4 molecules connect these chains forming double layers. The metal atoms are coordinated by 9 O-atoms with M? O-distances of 2.97 – 3.39 Å (Rb) and 3.13 – 3.51 Å (Cs). In the ammonium compound additional hydrogen bonds are formed originating from the NH4+ cation. This finally leads to the formation of S2? NH4+ chains (parallel to the S1 chains) as well as to a three-dimensional connection of both kinds of chains.  相似文献   

14.
Three novel polyoxometalate compounds consisting of Anderson‐type anions and trivalent lanthanide cations, [Ln(H2O)7Cr(OH)6Mo6O18]n·4nH2O (Ln = Ce 1 ; Sm 2 ; Eu 3 ), have been synthesized in aqueous solution and characterized by single crystal X‐ray diffraction, elemental analyses, IR spectra, and TG analyses. Single crystal X‐ray diffractions reveal that the structures of the 1:1 composite compound formed by the heteropolyanion [Cr(OH)6Mo6O18]3? as the building unit and the [Ln(H2O)7]3+ complex fragment as the linker, which exhibit a type of zig‐zag chain with alternating cations and anions through the Mo‐Ot′‐Ln‐Ot′‐Mo linkage in the crystal. The magnetic properties of 1 ? 3 have been studied by measuring their magnetic susceptibility over the temperature range of 2‐300 K. The UV‐vis spectra of 1 give the Mo‐O and CrIII‐O charge transfer transitions at 203 and 543 nm, respectively. In addition, the fluorescent characteristic transition of the Eu3+ ions in compound 3 is reported.  相似文献   

15.
On the Ternary Pseudohalogeno-dicyanomercurates(II) MHg(CN)2X (M = Na, K, Rb, Cs; X = NCO, NCS, N3) The structures of the pseudohalogeno-dicyanomercurates MHg(CN)2X · nH2O, formed by reaction of Hg(CN)2 with alkalipseudohalides MX (M = Na, K, Rb, Cs; X = NCO, NCS N3) in aqueous solutions containing digonal Hg(CN)2 molecules besides M+ and X? anions. Therefore the compounds can be formulated as double salts MX · Hg(CN)2. There are three types of structures with different values of crystal water whose structures have been determined by X-ray analysis of the cyanates NaHg(CN)2OCN · 2H2O, KHg (CN)2OCN and CsHg(CN)2OCN · H2O.  相似文献   

16.
Structures of Ionic Di(arenesulfonyl)amides. 4. Cross‐Linking Lamellar Layers by O–H…O Hydrogen Bonds: Structures of MN(SO2C6H4‐4‐COOH)2 (M = K, Rb, Cs) Syntheses and low‐temperature X‐ray crystal structures are reported for MIN(SO2C6H4‐4‐COOH)2, where M = K (monoclinic, space group P21/c, Z = 4, Z′ = 1), M = Rb (monoclinic, P21, Z = 4, Z′ = 2), or M = Cs (monoclinic, P21/c, Z = 4, Z′ = 1). The three compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and N(SO2)2 groups and the outer regions are formed by the 4‐carboxy substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, K and Cs adopt irregular and chemically distinct [MN1O7] octacoordinations, whereas the independent Rb cations attain irregular nonacoordinations of type [RbN2O7] or [RbO9] respectively. The crystal packings of the compounds are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic acid groups, resulting in a dense array of cyclic (COOH)2 motifs within the interlamellar regions.  相似文献   

17.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln=Pr, Nd, Sm), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group I2/a. They contain two types of periodate ions: octahedral H4IO6 groups and two crystallographically different I2O10 groups, which consist of two edge‐sharing octahedra. These anions coordinate to the cations as bridging groups yielding a three‐dimensional network. Together with some water of crystallization, a coordination number of 9 is achieved around the lanthanide ions with a tri‐capped trigonal prismatic geometry.  相似文献   

18.
Preparation, Vibrational Spectra, and Structure of Oxotetrafluorovanadates MIVOF4 (MI = Na, K, Rb, Cs, Tl, (CH3)4N) The compounds MIVOF4 (MI = K, Rb, Cs, Tl) and MIVOF4 · H2O (MI = Na, (CH3)4N) have been prepared. The crystal structure of KVOF4 has been determined by single crystal X-ray diffraction. The VOF-ions form endless chains by fluorine bridges. The lengths of the bridge bonds are 1.875(7) and 2.333(7) Å. The terminal V? O- and V? F-distances are 1.572(8) and 1.793 Å (mean value), respectively. The vibrational spectra have been registered and assigned.  相似文献   

19.
Ternary Alkali Metal Transition Metal Acetylides A2MC2 with A = Rb, Cs, and M = Pd, Pt By the reaction of Rb2C2 and Cs2C2 with palladium or platinum powder in sealed glass ampoules at 653 K ternary acetylides A2MC2 (A = Rb, Cs; M = Pd, Pt) were obtained. Their crystal structures were solved and refined by means of X‐ray powder investigations (Na2PdC2 structure type, P 3 m1, Z = 1). The crystal structures are characterised by [M(C2)2/22–] chains separated by the alkali metals. Raman spectroscopic investigations revealed wave numbers of the C–C stretching vibrations between 1833 and 1842 cm–1, which are in good agreement with the results of the analogous sodium and potassium compounds.  相似文献   

20.
On Polychalcogenides of Thallium with M2Q11 Groups as a Structural Building Block. I Preparation, Properties, X‐ray Diffractometry, and Spectroscopic Investigations of Tl4Nb2S11 and Tl4Ta2S11 The new ternary compounds Tl4Nb2S11 and Tl4Ta2S11 were prepared using Thallium polysulfide melts. Tl4M2S11 crystallises isotypically to K4Nb2S8.9Se2.1 in the triclinic space group P 1 with a = 7.806(2) Å, b = 8.866(2) Å, c = 13.121(3) Å, α = 72.72(2)°, β = 88.80(3)°, and γ = 85.86(2)° for M = Nb and a = 7.837(1) Å, b = 8.902(1) Å, c = 13.176(1) Å, α = 72.69(1)°, β = 88.74(1)°, and γ = 85.67(1)° for M = Ta. The interatomic distances as well as angles within the [M2S11]4– anions are similar to those of the previously reported data for analogous alkali metal polysulfides. Significant differences between Tl4M2S11 and A4M2S11 (A = K, Rb, Cs) are obvious for the shape of the polyhedra around the electropositive elements. The two title compounds melt congruently at 732 K (M = Nb) and 729 K (M = Ta). The optical band gaps were estimated as 1.26 eV for Tl4Nb2S11 and as 1.80 eV for the Tantalum compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号