首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three families of fluorene–oxadiazole‐based polymers with confinement moieties have successfully been prepared by the two‐step method for polyoxadiazole synthesis. These polymers show good solubility in common organic solvents, high thermal stability, and strong violet and blue photoluminescence in solution and as films, respectively. Their low‐lying highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels originate from the electron deficiency of an oxadiazole moiety, and this suggests that they may be useful for blue‐emitting and electron‐transport/hole‐blocking layers in electroluminescent devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 674–683, 2003  相似文献   

2.
New poly(dimethylsiloxane)‐based polymer organogelators with L ‐lysine derivatives were synthesized on the basis of synthetically simple procedure, and their organogelation abilities were investigated. These polymer organogelators have a good organogelation ability and form organogels in many organic solvents. In the organogels, polymer gelators constructed a mesoporous structure with a pore size of about 1 μm formed by entanglement of the self‐assembled nanofibers. The L ‐lysine derivatives in the polymer gelators functioned as a gelation‐causing segment and the organogelation was induced by self‐assembly of the L ‐lysine segments through a hydrogen bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3817–3824, 2006  相似文献   

3.
Carbohydrate‐functional siloxanes (CHFSs) that exhibit high intermolecular interactions and good environmental friendliness have successfully been synthesized by acid‐catalyzed transacetalation between an acetal‐functional siloxane and glucose in dimethylformamide/dioxane mixed solvents. Activated clay has proven to be a good catalyst because of its high activity and its easy removal from the product. Acetal‐functional siloxanes as starting materials can be easily synthesized in good yields by hydrosilylation between Si? H‐functional siloxanes and acrolein diethyl acetal. This method has the following advantages: (1) the inexpensive materials used, (2) the simplified process employed, and (3) the high yield achieved. Because the carbohydrate moieties in these materials have the nature of strong intermolecular interactions and are highly hydrophilic, CHFSs exhibit very high bulk viscosities in comparison with the corresponding acetal‐functional siloxanes and good solubilities in polar solvents such as dimethylformamide and dimethyl sulfoxide. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3336–3345, 2003  相似文献   

4.
Synthesis of n‐type organic semiconductors with high electron mobilities, good environmental stability, and good processability is an urgent task in current organic electronics. This is because most of π‐conjugated materials are p‐type and prefer to transport positive hole carriers. In this article, a series of new dicarboxylic imide‐substituted poly(p‐phenylene vinylenes) (DI‐PPVs) were first synthesized. They exhibited a high electron affinity of 3.60 eV and thus are able to transport electrons. The polymers showed tunable solubility in common organic solvents and high chemical and thermal stability. They remain rigidity of the PPV backbone, and strong interchain π‐stacking was observed in thin films by X‐ray diffraction measurement. All these suggested that these polymers could serve as good candidates as n‐type semiconductors in organic electronic devices such as n‐channel field‐effect transistors and all polymer‐based solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 186–194, 2010  相似文献   

5.
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004  相似文献   

6.
To investigate the position and amount of the CF3 group affecting the coloration of polyimides (PIs), we prepared 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]hexafluoropropane ( 2 ) with four CF3 groups with 2‐chloro‐5‐nitrobenzotrifluoride and 2,2‐bis(4‐hydroxyphenol)hexafluoropropane. A series of soluble and light‐colored fluorinated PIs ( 5 ) were synthesized from 2 and various aromatic dianhydrides ( 3a – 3f ). 5a – 5f had inherent viscosities ranging from 0.80 to 1.19 dL/g and were soluble in amide polar solvents and even in less polar solvents. The glass‐transition temperatures of 5 were 221–265 °C, and the 10% weight‐loss temperatures were above 493 °C. Their films had cutoff wavelengths between 343 and 390 nm, b* values (a yellowness index) ranging from 5 to 41, dielectric constants of 2.68–3.01 (1 MHz), and moisture absorptions of 0.03–0.29 wt %. In a comparison of the PI series 6 – 8 based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane, we found that the CF3 group close to the imide group was more effective in lowering the color; this means that CF3 of 5 , 7 , and 8f was more effective than that of 6c . The color intensity of the four PI series was lowered in the following order: 5 > 7 > 6 > 8 . The PI 5f , synthesized from diamine 2 and 4,4′‐hexafluoroisopropylidenediphthalic anhydride, had six CF3 groups in a repeated segment, so it exhibited the lightest color among the four series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 922–938, 2003  相似文献   

7.
The reactions of polystyryllithium and potassium on dimethoxymethyl 1,1‐diphenylethylene derivatives were studied in different solvents. In a polar medium, A3 and A6 star types were formed according to the stoichiometry, whereas in a nonpolar medium, hyperbranched structures were synthesized. Extensions of an already proposed mechanism in polar and nonpolar media were examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3329–3335, 2003  相似文献   

8.
This study develops a modified free‐volume model to predict solvent diffusion coefficients in amorphous polymers by combining the Vrentas–Duda model with the Simha–Somcynsky (S‐S) equation‐of‐state (EOS), and all the original parameters can be used in the modified model. The free volume of the polymer is estimated from the S‐S EOS together with the Williams‐Landel‐Ferry fractional free volume, and the complex process of determining polymer free‐volume parameters in the Vrentas–Duda model and measuring polymer viscoelasticity can be avoided. Moreover, the modified model includes the influence of not only temperature but also pressure on solvent diffusivity. Three common polymers and four solvents are employed to demonstrate the predictions of the modified model. The calculation results are generally consistent with the experimental values. It is reasonable to expect that the modified free‐volume model will become a useful tool in polymer process development. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1000–1009, 2006  相似文献   

9.
We have synthesized a novel carrier‐transporting copolymer and a nonconjugated light‐emitting polymer. The carrier‐transporting copolymer has a triphenylamine moiety as a hole‐transporting unit and a triazine moiety as an electron‐transporting unit, both of which are located in the polymer side chain. The nonconjugated light‐emitting polymer has a perylene moiety, which acts as an emitting unit in the polymer side chain. These polymers are very soluble in most organic solvents, such as monochlorobenzene, tetrahydrofuran, chloroform, and benzene. A single‐layered electroluminescent device consisting of ITO/copolymer and emitting‐material 4‐(dicyanomethylene)‐2‐methyl‐6‐(4‐dimethylaminostyryl)‐4H‐pyran (DCM) or light‐emitting polymer)/Al mixtures exhibits maximum external quantum efficiency when the concentration of the emitting material is 30 wt %. The device emits red or blue light according to the emitting material. When CsF is used as the electron‐injecting material, the drive voltage decreases drastically to 7 V, and the highest quantum efficiency is 0.5%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2733–2743, 2003  相似文献   

10.
We recently presented a short communication on the preparation of epoxy‐based monoliths possessing highly ordered structures by polymerization induced phase separation based on the spinodal decomposition. In this article, we describe in detail on reaction mechanisms and structural properties of the epoxy‐based monoliths with well‐controlled macropores in the micrometer range. We prepared epoxy‐based monoliths based on diglycidyl ether of bisphenol A, bis(4‐aminocyclohexyl)methane, and polyethylene glycol with a bicontinuous structure by in situ step‐growth polymerization. Different morphology of epoxy‐based monoliths could be obtained by changing formulation of monomers and porogenic solvents. Characterizations of their morphologies were performed using scanning electron microscopy, mercury intrusion porosimetry, small angle X‐ray scattering, and gas adsorption measurement (BET method). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3272–3281, 2008  相似文献   

11.
A comparison study of the structures and properties of starches regenerated from 1‐ethyl‐3‐methylimidazolium acetate ([Emim][OAc]) using different anti‐solvents (water, ethanol, or both water and ethanol) was conducted. The starch regenerated with water presented a V‐type crystalline structure whereas the one regenerated in ethanol displayed amorphous structure. Moreover, when an ethanol–water–ethanol method was used for regeneration, the product showed a weak V‐type crystalline structure. SAXS and FTIR were also used to investigate the molecular order of native and regenerated starches. With water used for regeneration, the aggregation and rearrangement of starch molecules occurred more easily. The increased enzyme resistance and thermal stability of regenerated starch with water could be ascribed to the rearrangement of molecular chains forming an aggregated structure with some degree of order. The reconstitution of starch molecules during regeneration with different anti‐solvents changed the multiscale structures and properties of the starch. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1231–1238  相似文献   

12.
Novel hydrophilic and thermosensitive poly(N,N‐diethylacrylamide‐co‐2‐hydroxyethyl methacrylate) resins were prepared by inverse suspension polymerization with N,N′‐methylenebis(acrylamide) as a crosslinker. The effects of chemical composition and degree of crosslinking on the polymerization were investigated. The polymer resins were characterized by elemental analysis, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The thermosensitivity of the crosslinked resins was demonstrated by their lower critical swelling temperatures. The swelling and deswelling volume of the beads in water varied depending on the molar fraction of the N,N‐diethylacrylamide. These beads swelled extensively in a variety of common solvents. They had high loadings of functional hydroxyl groups and were used as supports in the solid‐phase synthesis of an oligopeptide. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1681–1690, 2003  相似文献   

13.
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003  相似文献   

14.
This article reports on the electronic structure at interfaces found in organic semiconductor devices. The studied organic materials are C60 and poly (para‐phenylenevinylene) (PPV)‐like oligomers, and the metals are polycrystalline Au and Ag. To measure the energy levels at these interfaces, ultraviolet photoelectron spectroscopy has been used. It is shown how the energy levels at interfaces deviate from the bulk. Furthermore, it is demonstrated that the vacuum levels do not align at the studied interfaces. The misalignment is caused by an electric field at the interface. Several effects are presented that influence the energy alignment at interfaces, such as screening effects, dipole layer formation, charge transfer, and chemical interaction. The combination of interfaces investigated here is similar to interfaces found in polymer light‐emitting diodes and organic bulk heterojunction photovoltaic devices. The result, the misalignment of the vacuum levels, is expected to influence charge‐transfer processes across these interfaces, possibly affecting the electrical characteristics of organic semiconductor devices that contain similar interfaces. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2549–2560, 2003  相似文献   

15.
A new synthetic procedure toward substituted dithiophthalides, 5,6‐dialkyloxydithiophthalide and 5,6‐dithioalkyldithiophthalide, is presented. 5,6‐Dithiooctyldithiophthalide was obtained from 4,5‐dichlorophthalic acid in an eight‐step reaction with an overall yield of 26%. 5,6‐Dioctyloxydithiophthalide was obtained from 4,5‐dihydroxyphthalic acid dimethyl ester in a seven‐step reaction (overall yield = 15%). Both monomers were polymerized by a thermal and nonoxidative polymerization that resulted in soluble poly(isothianaphthene) derivatives with a band gap of about 1.2 eV. Photoinduced absorption measurements revealed the existence of charged excitations upon illumination. The photoinduced charge generation, combined with the extensive light‐harvesting properties and the easy processability, makes these materials quite promising for photovoltaic applications. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1034–1045, 2003  相似文献   

16.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

17.
A range of silanylene‐spaced divinylbenzene copolymers ( 1 ) and the corresponding monomers ( 2 ) have been synthesized by the rhodium‐catalyzed hydrosilylation of the corresponding bisalkynes with bissilyl hydrides, and the photophysical properties of 1 and 2 have been investigated. The silicon moiety in 1 serves as an insulating tetrahedral spacer that makes 1 highly folded. The two chromophores may be in close proximity such that a ground‐state intrachain interaction between two conjugated moieties through space might occur. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2218–2231, 2003  相似文献   

18.
A study on a diblock copolymer melt that can form certain specific interactions between dissimilar monomers is performed first with a mean‐field approach and then with a fluctuation correction approach. Flory's interaction parameter χ possesses both enthalpic and entropic contributions because of the specific interactions. It is found that not only a lower critical ordering transition but also an immiscibility loop with an upper critical ordering transition can be developed in the copolymer by the presence of the specific interactions and the entropic component in χ. The mean‐field loop phase diagram is shown to feature a typical sequence of microphase transitions upon both heating and cooling with two continuous transition points at a symmetric composition. It is revealed that the fluctuation effects remove both continuous transition points to significantly shrink the loop. The pressure effects on the phase behavior of the copolymer are also discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1889–1896, 2003  相似文献   

19.
A new method was developed for preparing polystyrene‐functionalized multiple‐walled carbon nanotubes (MWNTs) through the termination of anionically synthesized living polystyryllithium with the acyl chloride functionalities on the MWNTs. The acyl chloride functionalities on the MWNTs were in turn obtained by the formation of carboxyls via chemical oxidation and their conversion into acyl chlorides. The polystyrene‐functionalized MWNTs had good dispersion in common organic solvents, and this indicated good compatibility for the preparation of styrenic nanocomposite materials. The synthesis results and characterization data for the functionalized MWNTs, collected via Fourier transform infrared, thermogravimetric analysis, solid‐state NMR, and electron microscopy, are presented and discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5802–5810, 2004  相似文献   

20.
Poly[(m‐phenylene vinylene)‐alt‐(o‐phenylene vinylene)]s with different contents of cis‐/trans‐CH?CH ( 3 and 6 ) have been synthesized through Wittig condensation. The polymers exhibit good solubility in common organic solvents such as toluene and tetrahydrofuran. A comparison of the optical properties has been made between 3 and its phenyl regioisomers containing either p‐phenylene or m‐phenylene units. The results show that the regiochemistry of the phenyl ring can be a useful tool for tuning the emission color of π‐conjugated polymers because the extension of π conjugation can only partially be achieved through an o‐phenylene bridge. Although both polymers 3 and 6 exhibit comparable low fluorescence quantum efficiencies (≈0.18) in solution, their films are highly luminescent, showing a broad emission band near 456 nm (blue color). Electroluminescence results show that the device of polymer 3 , which has a higher content of trans‐CH?CH linkages, is about 20 times more efficient than that of 6 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2650–2658, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号