首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an analytical method for determining the spatial distribution of alumina inclusion particles in several ferritic stainless steels by laser‐induced breakdown optical emission spectrometry with a single‐shot laser scanned on the sample surface. For this purpose, an irradiation system, which comprised a Q‐switched Nd:YAG laser with an average energy of 50 mJ/pulse and a precisely driven X‐Y‐Z sample stage, was prepared. A Czerny–Turner‐mounting spectrograph equipped with an ICCD detector was employed for a time‐resolved measurement of the laser‐induced breakdown optical emission spectrometry signal. The intensity ratio of Al I 396.152 nm to Cr I 396.368 nm was measured each for the single shot, while the irradiation positions were step‐wise moved in the X‐Y direction and then the same sampling area was repeatedly irradiated by subsequent laser shots in the Z direction. The number of alumina particles was mapped from the intensity ratio of Al/Cr each for the irradiation points in both the lateral and in‐depth directions, enabling the distribution of alumina particles to be presented. The resolution of our measuring system was 40 μm in the lateral position and 6–7 μm in the depth direction, which were mainly determined by the crater size of a laser shot. A typical size of the alumina particles (several μm) was smaller than their resolutions; nevertheless, the suggested method would be still more effective to give the distribution of alumina particles, especially the coarse ones, because of its rapid response for the analytical result. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
We explored phase separation and self‐assembly of perfluoroalkyl segments at the surface of polymer films obtained from latices of semifluorinated acrylate copolymers and the corresponding latex blends of nonfluorinated and semifluorinated polyacrylates. With laser‐induced secondary mass spectrometry the fluorine distribution was measured after annealing above the minimum film‐forming temperature of the polymers up to a depth of several micrometers. Depth profiles of a semifluorinated acrylate homopolymer and latex blends thereof with fluorine‐free alkylacrylates with 25, 50, and 75 mol % semifluorinated acrylate as well as a copolymer comprised of alkyl acrylate and semifluorinated acrylate (50/50 mol %) were investigated. In the case of latex blends containing both semifluorinated polyacrylates and fluorine‐free or low‐fluorine polymers, self‐assembly accounted for enrichment of the perfluoroalkyl segments at the surface. Coatings exhibiting low surface energy and having a substantially reduced total fluorine content were obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 360–367, 2003  相似文献   

3.
In this work, the capability of linear correlation for depth profiling by laser‐induced breakdown spectroscopy (LIBS) is studied for the first time. A software was specially developed for the calculus of the linear correlation coefficients and its representation in the format of depth profiles. Thick layered samples (layers with thickness of tens to hundreds of micrometers) of different nature, archaeological ceramics and polymer coatings on steel, were characterized by LIBS using the conventional approach based on intensity profiles, and the correlation method. The results revealed that, without using any normalization, the comparison of LIB spectra through the linear correlation coefficient gave an improvement of the depth profile quality and the interface localization by minimizing the influence of fluctuations and decay of the signals in the global intensity of spectra, caused by sources other than concentration variations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
An innovative method of volatile organic compounds analysis by using microwave‐induced plasma ionization (MIPI) source in combination with an ambient ion trap mass spectrometer is presented here. Using MIPI for direct sample vapor, analysis was achieved without any sample preparation or subsequent heating. The relative abundance of the target compounds can be obtained almost instantly within a few seconds. The ionization processes of different volatile compounds was optimized, and the limits of detection were identified in the range of 0.15–4.5 pptv or 0.73–8.80 pg ml?1. The relative standard deviation (RSD) is in the range of 4–14%, while correlation coefficients of the working curves (R2) are better than 0.98. The new method possesses advantages of ease operation, time‐saving, high sensitivity and inexpensive setup. In addition, the ionization processes of short n‐alkane chains were investigated with the MIPI technique, and a unique [M + 13]+ was detected, which has not been reported in detail by any other related ionization techniques. An ionization mechanism was proposed on the basis of the experimental results obtained in this work and available information in literatures, in which the n‐alkanes in the plasma environment possibly generate protonated cyclopentadiene [M – 5]+ or alkyl‐substituted analogues as well as hydrous ions [M + 13]+ and [M + 13 + 18]+, as shown in Scheme 1 in the main text. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A novel method was developed for analysing geological materials for Au, Ag, Pd and Pt by continuous powder introduction microwave induced plasma atomic emission spectrometry (CPI-MIP-AES). The preconcentration of the trace metals on activated carbon (AC) was performed before conducting MIP-AES measurements in order to obtain accurate and precise analytical results. The method proposed is based on the selective sorption of precious metals that are subsequently introduced to the plasma as a dry particulate aerosol consisted of analytes collected on the sorbent. The technical design and operating conditions of the novel sample introduction system based on the fluidized-bed concept has been optimized. The microwave excitation source with integrated rectangular cavity TE101 and vertically positioned plasma torch has been used. The signal stability proved to be adequate for sequential mode of measurements due to the vertical plasma configuration as well as the MIP-AES system compatibility with the CPI technique. Calibration was done using home-made standards obtained by sorption of metals of interest from standard solutions on activated carbon. Precision is typically 1-4% relative standard deviation at the 1 μg g−1 level. Under measurement conditions the detection limits for Ag, Au, Pd and Pt were 24, 43, 57 and 550 ng per 1 g of AC, respectively. The proposed procedure was used for Au, Ag, Pd and Pt determination in the platinum ore SARM-7 as well as Au and Ag in the Chinese soil GBW-07405 certified reference materials. The standard addition technique was used and recoveries revealed that the proposed method shows good accuracy and precision.  相似文献   

6.
Laser‐induced breakdown spectroscopy (LIBS) is currently being used onboard the Mars Science Laboratory rover Curiosity to predict elemental abundances in dust, rocks, and soils using a partial least squares regression model developed by the ChemCam team. Accuracy of that model is constrained by the number of samples needed in the calibration, which grows exponentially with the dimensionality of the data, a phenomenon known as the curse of dimensionality. LIBS data are very high dimensional, and the number of ground‐truth samples (i.e., standards) recorded with the ChemCam before departing for Mars was small compared with the dimensionality, so strategies to optimize prediction accuracy are needed. In this study, we first use an existing machine learning algorithm, locally linear embedding (LLE), to combat the curse of dimensionality by embedding the data into a low‐dimensional manifold subspace before regressing. LLE constructs its embedding by maintaining local neighborhood distances and discarding large global geodesic distances between samples, in an attempt to preserve the underlying geometric structure of the data. We also introduce a novel supervised version, LLE for regression (LLER), which takes into account the known chemical composition of the training data when embedding. LLER is shown to outperform traditional LLE when predicting most major elements. We show the effectiveness of both algorithms using three different LIBS datasets recorded under Mars‐like conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The gas‐phase synthesis and chemical vapour deposition of nanostructured germanium telluride has been achieved for the first time. The pulsed IR laser irradiation of gaseous CH3)4Ge? (CH3)2Te? SF6 mixtures results in homogeneous decomposition of both organometallics and formation of GeTex (x = 1, 2). The amorphous GeTe2 and crystalline GeTe were identified by Raman and X‐ray photoelectron spectroscopy and by electron diffraction. Their formation is explained by an intermediacy of germanium and tellurium clusters and by reaction between these clusters in a hot laser‐induced zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The detection of layer‐by‐layer self‐assembly multilayer films was carried out using low‐temperature plasma (LTP) mass spectrometry (MS) under ambient conditions. These multilayer films have been prepared on quartz plates through the alternate assembling of oppositely charged 4‐aminothiophenol (4‐ATP) capped Au particles and thioglycolic acid (TGA) capped Ag particles. An LTP probe was used for direct desorption and ionization of chemical components on the films. Without the complicated sample preparation, the structure information of 4‐ATP and TGA on films was studied by LTP‐MS. Characteristic ions of 4‐ATP (M) and TGA (F), including [M]+?, [M‐NH2]+, [M‐HCN‐H]+, and [F + H]+, [F‐H]+, [F‐OH]+, [F‐COOH]+ were recorded by LTP‐MS on the films. However, [M‐CS‐H]+ and [F‐SH]+ could not be observed on the film, which were detected in the neat sample. In addition, the semi‐quantitative analysis of chemical components on monolayer film was carried out, and the amounts of 4‐ATP and TGA on monolayer surface were 45 ng/mm2 and 54 ng/mm2, respectively. This resulted the ionization efficiencies of 72% for 4‐ATP and 54% for TGA. In order to evaluate the reliability of present LTP‐MS, the correlations between this approach and some traditional methods, such as UV–vis spectroscopy, atomic force microscope and X‐ray photoelectron spectroscopy were studied, which resulted the correlation coefficients of higher than 0.9776. The results indicated that this technique can be used for analyzing the films without any pretreatment, which possesses great potential in the studies of self‐assembly multilayer films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A stable, low gas-flow torch has been developed for use with a helium microwave induced plasma (MIP). A toroidal plasma with central analyte introduction is obtained by the addition of a tantalum coupling probe injector tube. This injector penetrates through 100% of the total cavity depth and aids in the efficiency of power transfer to the cavity, in plasma initiation, and in circumventing the effects of a lack of homogeneity in the microwave field on analyte distribution in the plasma. The tangential helium flow was 41/min and the microwave power was 60 W.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

10.
A highly sensitive method was developed for the simultaneous separation and determination of organic and inorganic selenium species in rice by ion‐pairing reversed‐phase chromatography combined with inductively coupled plasma tandem mass spectrometry. To achieve a good separation of these species, a comparison between anion‐exchange chromatography and ion‐pairing reversed‐phase chromatography was performed. The results indicated that ion‐pairing reversed‐phase chromatography was more suitable due to better separation and higher sensitivity for all analytes. In this case, a StableBond C18 column proved to be more robust or to have a better resolution than other C18 columns, when 0.5 mM tetrabutylammonium hydroxide and 10 mM ammonium acetate at pH 5.5 were used as the mobile phase. Moreover, an excellent sensitivity was obtained in terms of interferences by means of tandem mass spectrometry in the hydrogen mode. The detection limits were 0.02–0.12 μg/L, and recoveries of five selenium species were 75–114%, with relative standard deviations ≤ 9.4%. This method was successfully applied to the analysis of rice samples. Compared with previous studies, the proposed method not only gave comparable results when used for measuring selenium‐enriched rice, but it can provide greater sensitivity for the detection of low concentrations of selenium species in rice.  相似文献   

11.
A method for multielement determination of major elements in polymer additives by microwave induced plasma atomic emission spectrometry (MIP-AES) has been elaborated. Microwave digestion with nitric acid was selected for sample preparation because of its speed and versatility. Sodium nitrate was added to the digestion mixture in order to reduce phosphorus losses. The precision obtained varied between 2 and 4.5% depending on the element determined. The accuracy of the method was studied by analyzing the Spex 5-element oil standard. The method was applied to a variety of commercial and in-house prepared compositions.  相似文献   

12.
Rapid characterization of metabolites and risk compounds such as chemical residues and natural toxins in raw food materials such as vegetables, meats, and edible living plants and animals plays an important part in ensuing food quality and safety. To rapidly characterize the analytes in raw food materials, it is essential to develop in situ method for directly analyzing raw food materials. In this work, raw food materials including biological tissues and living samples were placed between an electrode and mass spectrometric (MS) inlet under a strong electrostatic field; analytes were rapidly induced to generate electrospray ionization (ESI) from the sample tip by adding a drop of solvent onto the sample. Therefore, the electrostatic field–induced tip‐ESI‐MS allows raw samples to avoid contacting high voltage, and thus this method has the advantage for in vivo analysis of food living plants and animals. Metabolite profiling, residues of pesticides and veterinary drugs, and natural toxins from raw food materials have been successfully detected. The analytical performances, including the linear ranges, sensitivity, and reproducibility, were investigated for direct sample analysis. The ionization mechanism of electrostatic field–induced tip‐ESI was also discussed in this work.  相似文献   

13.
激光诱导等离子体光谱元素成像技术以其具备测量不受辐射本底影响,测量速度快,样品制备相对简单,可远程分析放射性样品等优势在核材料检测领域展现出巨大的潜力。本文将激光诱导等离子体光谱元素成像技术分为成像系统和数据处理两个方面进行介绍,并对其研究进展和在核材料检测领域的应用进行综合分析,最后总结了LIPS元素成像技术的优势与面临的挑战,对LIPS元素成像技术在核材料检测领域的发展趋势进行展望。  相似文献   

14.
Methylating substances alter DNA by forming N3‐methylthymidine (N3mT), a mutagenic base modification. To develop a sensitive analytical method for the detection of N3mT in DNA based on capillary electrophoresis with laser‐induced fluorescence detection (CE‐LIF), we synthesized the N3mT‐3’‐phosphate as a chemical standard. The limit of detection was 1.9 amol of N3mT, which corresponds to one molecule of N3mT per 1000 normal nucleotides or 0.1%. With this method, we demonstrated that the carcinogenic nitrosamine N’‐nitrosonornicotine (NNN) induced N3mT in the human lung cancer cell line A549. Treatment with NNN also caused an elevated degree of 5‐hydroxymethylcytidine (5hmdC) in DNA, while the methylation degree (i.e. 5‐methylcytidine; 5mdC) stayed constant. According to our data, NNN could, via yet unknown mechanisms, play a role in the formation of N3mT as well as 5hmdC. In this study we have developed a new sensitive analytical method using CE‐LIF for the simultaneous detection of the three DNA modifications, 5mdC, 5hmdC and N3mT.  相似文献   

15.
The synthesis of silicon‐based polymer films was studied by excimer laser (248 nm)‐induced photo‐reaction of phenylsilane and methyl‐phenylsilane at reduced pressure. IR and UV–VIS results showed that the films were composed of Si–C network structures with phenyl rings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
Classification of suspect powders, by using laser‐induced breakdown spectroscopy (LIBS) spectra, to determine if they could contain Bacillus anthracis spores is difficult because of the variability in their composition and the variability typically associated with LIBS analysis. A method that builds a support vector machine classification model for such spectra relying on the known elemental composition of the Bacillus spores was developed. A wavelet transformation was incorporated in this method to allow for possible thresholding or standardization, then a linear model technique using the known elemental structure of the spores was incorporated for dimension reduction, and a support vector machine approach was employed for the final classification of the substance. The method was applied to real data produced from an LIBS device. Several methods used to test the predictive performance of the classification model revealed promising results. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

17.
Plasma‐induced graft‐polymerization (PIGP) method was utilized in this study to improve corrosion behavior and biocompatibility of titanium (Ti) surface. Bioactive molecule polyacrylamide (PAM) was immobilized onto Ti surface by introducing silanederivatized spacer arms as an intermediary for the covalent linkage. Ti was firstly activated by O2 plasma, and oxygen‐containing groups were introduced on its surface consequently. The intermediary mercapto silane spacer molecules were then covalently linked to the oxidated surface, followed by the covalent binding of PAM and the sulfhydryl‐terminal groups via PIGP. Surface analyses following modification process included water contact angles (CA), SEM, attenuated total reflection‐Fourier transform infrared spectroscopy (ATR‐FTIR), XPS and atomic force microscope (AFM). The results revealed the effectiveness of this method on immobilizing PAM to Ti surface, and the hydrophilicity of modified surface improved remarkably. In addition, potentiodynamic polarization and cellular proliferation tests were implemented to validate the enhanced corrosion‐resistance and biocompatibility of modified Ti surface, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
《Electrophoresis》2017,38(16):2004-2010
A nonaqueous micellar electrokinetic capillary chromatography method with indirect LIF was developed for the determination of strobilurin fungicide residues in fruits and vegetables. Hydrophobic CdTe quantum dots (QDs) synthesized in aqueous phase were used as background fluorescent substance. The BGE solution, QD concentration, and separation voltage were optimized to obtain the best separation efficiency and the highest signal intensity. The optimal BGE solution consists of 40 mM phosphate, 120 mM sodium dodecyl sulfate, 15% v/v water and 15% v/v hydrophobic CdTe QDs in formamide, of which apparent pH is 9.5. The optimized separation voltage is controlled as 25 kV. The resultant detection limits of azoxystrobin, kresoxim‐methyl, and pyraclostrobin are all 0.001 mg/kg, their linear dynamic ranges are 0.005–2.5 mg/kg, and the recoveries of the spiked samples are 81.7–96.1%, 86.5–95.7%, and 87.3–97.4%, respectively. This method has been proved to be sensitive enough to detect the aforementioned fungicides in fruits and vegetables at the maximum residue limits.  相似文献   

19.
The potential of a double pulse (DP) excitation scheme for in‐depth characterization of ceramic samples using laser induced breakdown spectrometry (LIBS) has been demonstrated. For this purpose, two Q‐switched Nd:YAG lasers in orthogonal configuration were employed, the first one to ablate the sample (1064 nm) and the second one (532 nm) to excite the ablated material. Light emission was collected by a spectrograph and detected by an intensified charge‐coupled device (CCD) detector. Optimal conditions such as relative laser beam positions, laser pulse energies, inter‐pulse separation and CCD delay time were studied. Depth profiles were evaluated on the basis of various elemental compositions in both layers of ceramic samples. The depth resolution with DP configuration was improved by almost twofold as compared to the single‐pulse approach. The reproducibility of the depth profiles is also twice better with double pulse LIBS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Caspofungin [(CASPO) MK-0991] is the first broad-spectrum anti-fungal agent of the echinocandin class approved for clinical use. Measurement of CASPO levels in blood might help monitor therapy in patients who are critically ill, in particular, if high-dose regimens or combinations of CASPO with other anti-fungals are used. The objective of this study was to develop a fast method for the measurement of CASPO levels in clinical blood samples using liquid chromatography coupled to a triple-quadrupole mass spectrometer. Stock solutions were prepared in plasma to avoid CASPO adsorption to glass and plastic surfaces during processing. CASPO and the internal standard (IS) were extracted from 100 microl of plasma using acetonitrile protein precipitation. The supernatant was diluted and directly injected into an analytical column (C8; 2.1 x 30 mm). The total run time was 15 min. CASPO was ionized by electrospray in the positive mode. CASPO and IS [M + 2H]2+ parent ions (m/z 547.3 and 547.8, respectively) and specific product ions (m/z 137.1 and 62.2, respectively) were used for the ion transitions. No carry over or cross-talk was observed on the column. The mean method recovery was 90 +/- 3%. Neither blood from different individuals (n = 6) nor the presence of concomitant drugs (n = 33) in plasma samples interfered with CASPO quantification. Quantification over time of the CASPO levels in plasma and whole blood was investigated at different pre-analysis storage conditions. The calibration curve included the clinically relevant CASPO concentration range from 0.04 to 20 microg/ml. Mean intra- and inter-day accuracy was 96.1 +/- 2.2% and 102.5 +/- 2.4%, respectively. Mean intra- and inter-day precision was 7.9 +/- 3.2% and 6.3 +/- 1.8%, respectively. This simple and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method may easily be implemented for monitoring CASPO therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号