首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electronic Structures of Highly Symmetrical Compounds of f Elements. 38 [1] Crystal, Molecular and Electronic Structure of Tris(hydrotris(1‐pyrazolyl)borato)samarium(III) Tris(hydrotris(1‐pyrazolyl)borato)samarium(III) (SmTp3) crystallizes in the space group P63/m (No. 176) with two molecules in the unit cell. The Sm3+ central ion is coordinated by nine N atoms in the shape of a tricapped trigonal prism, leading to an effective crystal field (CF) of D3h symmetry. The underlying CF splitting pattern was extracted from the absorption and luminescence spectra run at room and low temperatures, and simulated by fitting the free parameters of a phenomenological Hamiltonian achieving an r.m.s. deviation of 9.4 cm?1 for 58 assignments. The parameters used allow the estimation of the global ligand field strength experienced by the Sm3+ central ion, the insertion of SmTp3 into empirical nephelauxetic and relativistic nephelauxetic series, and the set‐up of experimentally based nonrelativistic and relativistic molecular orbital schemes in the f range.  相似文献   

2.
Electronic Structures of Highly Symmetrical Compounds of f Elements. 37 [1] Spectroscopic and Structural Characterization of Tris(2, 6‐di‐t‐butyl‐phenolato)lanthanide(III) (Ln(OAr′)3; Ln = Pr, Nd), and Parametric Analysis of the Crystal Field Splitting Pattern of Nd(OAr′)3 Pr(OAr′)3 and Nd(OAr′)3 crystallize (at approximately 150 K and 200 K, respectively) in the monoclinic space group P21 with four molecules in the unit cell. If one considers only the directly coordinating oxygen atoms, the effective crystal field is of C3v symmetry. The signals in the optical spectra of Pr(OAr′)3 are broad using either solutions or solids, even at ca. 80‐90 K, thus they are not suitable for interpretation purposes. Nd(OAr′)3, however, exhibits sharp absorption bands at room and low temperatures, which are assigned in analogy to the previously identified absorption transitions of Nd[N(SiMe3)2]3 based on optical polarization measurements. The thus derived crystal field splitting pattern is simulated by fitting the free parameters of a phenomenological Hamiltonian, achieving a reduced r.m.s. deviation of 26.4 cm—1 for 64 assignments. The parameters used allow the estimation of the ligand field strength associated with the (OAr′) ligand, the insertion of this ligand into empirical nephelauxetic and relativistic nephelauxetic series, and the setup of experimentally‐based non‐relativistic and relativistic molecular orbital schemes in the f range.  相似文献   

3.
Electronic Structures of Organometallic Complexes of f Elements. 60 [1] Structural, Single Crystal Optical and Magnetooptical Investigations on Trialkylphosphate Adducts of the Tris(cyclopentadienyl)lanthanide(III) (Ln = La, Pr) Moiety as well as Results of Comparing Optical Studies of [Pr(Ind)3(OP(OEt)3)] (Ind = indenyl) [Ln(Cp)3(OP(OR)3)] (Cp = η5‐cyclopentadienyl; Ln = La, R = Et ( 1 ); Ln = Pr, R = Me ( 2 ); Ln = Pr, R = Et ( 3 )) and [Pr(Ind)3(OP(OEt)3)] ( 4 ) have been synthesized and spectroscopically as well as partly structurally (only compounds 1 and 2 ) characterized. On the basis of variable temperature measurements of α absorption spectra of an oriented single crystal, the magnetic circular dichroism spectra of dissolved, and the luminescence spectra of powdered material, a nearly complete crystal field (CF) splitting pattern could be derived for 3 , and simulated by fitting the free parameters of a phenomenological Hamiltonian. The parameters used in the fit allowed the calculation of the global CF strength experienced by the Pr3+ central ion, the estimation of the nephelauxetic and relativistic nephelauxetic parameters, as well as the setup of experimentally based non‐relativistic and relativistic molecular orbital schemes in the f range. The optical spectra of compound 4 suggest that two different species exist at low temperatures, thus preventing a successful CF analysis.  相似文献   

4.
Electronic Structures of Organometallic Complexes of f Elements. 67 First Parametric Analysis of the Absorption Spectrum of a Molecular Compound of CeIIIμ: Tris(η5‐tetramethylcyclopentadienyl)cerium(III) The absorption spectra (in the IR/NIR/Vis/UV range) of Ce(C5Me4H)3 ( 1 ) and La(C5Me4H)3 ( 2 ) were recorded at room and low temperatures. From the spectra obtained, two alternative closely related crystal field (CF) splitting patterns of 1 could be derived, and simulated by fitting the free parameters of a phenomenological Hamiltonian. The fact that the difference of the experimental energies of the barycenters of CF levels of the multiplets 2F7/2 and 2F5/2 is larger than in the gaseous free Ce3+ ion (“anti”‐relativistic nephelauxetic effect) could be explained by coupling effects of these multiplets via the CF, resulting in lower spin‐orbit coupling parameters than in the case of the gaseous free Ce3+ ion. The experimentally derived CF splitting pattern of 1 is compared with the predictions of previous non‐relativistic SW‐Xα and relativistic DV‐Xα calculations.  相似文献   

5.
Electronic Structures of Organometallic Complexes of f Elements. 68 Absorption and First Luminescence and Raman Spectroscopic Polarization Measurements of an Oriented Organometallic Single Crystal: Pr(C5Me4H)3 Optical polarization measurements of oriented single crystals of Pr(C5Me4H)3 ( 1 ) were performed at room temperature. In order to separate “cold” and “hot” f‐f‐transitions and νC–H combination vibrations, the absorption spectra of KBr pellets of compound 1 and La(C5Me4H)3 ( 2 ) were additionally recorded at ca. 77 K. To gather additional information about the wavefunctions of the crystal field (CF) states of complex 1 , a magnetic circular dichroism spectrum of 1 was recorded too. From the spectra obtained, a partial CF splitting pattern of 1 was derived, and simulated by fitting the free parameters of a phenomenological Hamiltonian, leading to a reduced r.m.s. deviation of 24.8 cm−1 for 24 assignments. On the basis of these phenomenological CF parameters, the global CF strength experienced by the Pr3+ central ion was estimated, and seems to be the largest one ever encountered in PrIII chemistry. The obtained Slater parameter F2 and the spin‐orbit coupling parameter ζ4f allow the insertion of compound 1 into empirical nephelauxetic and relativistic nephelauxetic series, respectively, of PrIII compounds. With its low F2 value, complex 1 is the most covalent PrIII compound (considering only f electrons) found to date. The experimentally‐based non‐relativistic molecular orbital scheme (in the f range) of complex 1 was determined and compared with the results of a previous Xα‐SW calculation on the ψ trigonal planar model compound Pr(η5‐C5H5)3. In the framework of the search for “polarized” luminescence transitions, polarized Raman spectra of 1 were recorded too, and compared to the corresponding FIR and IR spectra run by means of pellets.  相似文献   

6.
Emission and UV-vis absorption spectra of (hydrotris(pyrazolyl)borato)(triphenylarsine)copper(I), (CuTpAsPh3), (hydrotris(pyrazolyl)borato)(triethylamine)copper(I), (CuTpNEt3), and (hydrotris(pyrazolyl)borato)(triphenylphosphine)copper(I), (CuTpPPh3), are reported. The spectra of the arsine complex contain low-energy bands (with a band maximum at 16,500 cm(-1) in emission and a weak shoulder centered at about 25,000 cm(-1) in absorption) that are not present in the corresponding spectra of the amine or phosphine complexes. The lowest energy electronic transition is assigned to ligand to ligand charge transfer (LLCT) with some contribution from the metal. This assignment is consistent with PM3(tm) molecular orbital calculations that show the HOMO to consist primarily of pi orbitals on the Tp ligand (with some metal orbital character) and the LUMO to be primarily antibonding orbitals on the AsPh3 ligand (also with some metal orbital character). The absorption shoulder shows a strong negative solvatochromism, indicative of a reversal or rotation of electric dipole upon excitation, and consistent with a LLCT. The trends in the energies of the electronic transitions and the role of the metal on the LLCT are discussed.  相似文献   

7.
The coordination of the modified poly(azolyl)borato ligand hydrotris(1,2,4‐triazolyl)borato (L) with main group metals leads to complexes with coordination numbers of eight and the formula [CaL2(H2O)2], [SrL2(H2O)2], and [PbL2(H2O)2]. The two L ligands coordinate in a “bent” arrangement to allow for the coordination of the two aqua ligands. This is in sharp contrast to six‐coordinated, pseudo‐octahedral CaTp2 and PbTp2 complexes [Tp = hydrotris(pyrazolyl)borato]. The calcium, strontium, and lead complexes are isostructural. No stereochemical lone pair activity is evident in [PbL2(H2O)2]. Two additional water molecules of crystallization complete the crystal structure of [CaL2(H2O)2] · 2 H2O and [PbL2(H2O)2] · 2 H2O. In the synthesis of [PbL2(H2O)2] an intermediate of the form [Pb(μ3‐L)(NO3)H2O] could isolated and structurally characterized. There, the lead(II) center is seven coordinated with a presumably stereochemically active lone pair. Long M–L bonds argue for a more ionic bonding to the modified tris(triazolyl)borato ligand when compared to analogous M–Tp complexes.  相似文献   

8.
Electronic Structures of Highly Symmetrical Compounds of f Elements. 42 Derivation and Simulation of the Crystal Field Splitting Pattern of Tris(bis(trimethylsilyl)amido)ytterbium(III) Tris(bis(trimethylsilyl)amido)ytterbium(III), (Yb(btmsa)3 ( 1 )) was grown as a single crystal of the size 6×2×2 mm. The unpolarized absorption and luminescence as well as the σ and π absorption spectra of this crystal were recorded at room and low temperatures. The observed polarization properties as well as identificational calculations allowed the separation of zero‐phonon‐ and phonon‐assisted transitions of comparable intensities. The thus derived crystal field splitting pattern could be simulated by fitting the free parameters of a phenomenological Hamiltonian. In order to assign the coupling vibrations, FIR/MIR‐ and unpolarized Raman spectra of 1 as well as polarized Raman spectra of Y(btmsa)3 ( 2 ) were recorded and compared with previously assigned ones of MeGa(btmsa)2 and H(btmsa).  相似文献   

9.
Electronic Structures of Organometallic Complexes of f Elements. 65 First Observation of Linear Dichroism of a Homoleptic Organometallic π Complex of f Elements: Tris(η5‐tetramethylcyclopentadienyl)neodymium(III) The absorption spectrum of a powder sample of pseudo (Ψ) trigonal planar Nd(η5‐C5Me4H)3 ( 1 ) has been measured at room temperature and ca. 40 K, respectively, and the linear dichroism spectra of σ‐ and π‐type of an oriented single crystal at ambient temperature and 77 K. Neglecting the signals of the C–H combination vibrations and overtones extracted from the absorption spectrum of La(η5‐C5Me4H)3 ( 2 ), the observed polarization properties of the remaining f‐f transitions allowed the derivation of a truncated crystal field splitting pattern. The free parameters of a phenomenological Hamiltonian were fitted to this pattern leading to a reduced r.m.s. deviation of 16.1 cm?1 for 38 assignments. The temperature dependence of the paramagnetic susceptibility of 1 was calculated, making use of the crystal field energies and wavefunctions of the fit. Introducing an orbital reduction factor of 0.98, calculated values of 1 agree well with the experimental ones of Ψ trigonal planar Nd(C5H4tBu)3.  相似文献   

10.
The Dynamic Behaviour of Hydridotris(3,5‐dimethylpyrazolyl)borate Ligand in Organopalladium(II) Complexes The new palladium(II) complexes [PdTp*(R)(PPh3)] (R = Me ( 1 ), C(O)Me ( 1 a ), p‐tol ( 2 ), C(O)p‐tol ( 2 a )) of the tridentate nitrogen ligand Tp* = [HB(3,5‐Me2pz)3] are non‐rigid molecules on the NMR time scale at room temperature. The 1H‐NMR spectra at low temperature indicate Cs‐symmetry for 1 whereas 1 a , 2 , 2 a are symmetryless (C1). The difference in temperature dependence of the 1H‐NMR spectra is not indicative of a different exchange mechanism. We postulate that in all cases an intramolecular substitution of coordinated and non‐coordinated pyrazolyl substituents takes place. We do not observe a rapid Turnstile rotation of a trigonal bipyramidal intermediate. The crystal structure analysis shows that the coordination of the palladium atom in complex 1 is planar.  相似文献   

11.
Stepwise introduction of the potential tripod ligands tris(3,5‐dimethyl‐1‐pyrazolyl)borate (Tp*) and tris(1‐cyclohepta‐2,4,6‐trienyl)phosphane into the coordination sphere of rhodium(I) leads mainly to [Tp*Rh{P(C7H7)3}] ( 4 ), in which Tp* is linked to the rhodium through a single pyrazolyl group and a non‐linear B–H–Rh bridge. This is the novel, now firmly established coordination mode κ2(N,B–H). The phosphane ligand is coordinated through one Rh–P and two Rh‐olefin bonds. Important structural features determined for the crystalline state of 4 are retained in solution, as shown by the 1H, 11B, 13C, 31P and 103Rh NMR spectra.  相似文献   

12.
Different kinds of counterions (such as NO3, ClO4, and Cl) play a special role in controlling the framework of coordination compounds. Using this strategy, 5‐aminotetrazole‐1‐propionic acid (Hatzp) was selected to react with praseodymium(III) nitrate or perchlorate in the same solvent system, producing two different coordination compounds, [Pr2(atzp)4(H2O)8] · 2NO3 · 2H2O ( 1 ) and [Pr2(atzp)6(H2O)2] · H2O ( 2 ). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. X‐ray diffraction analysis revealed that compound 1 displays a dinuclear structure, whereas 2 shows a one dimensional zigzag chain framework. Furthermore, the luminescence properties of compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

13.
Reaction of the Grignard reagent with polydentate nitrogen‐donor ligands yields new species with rare magnesium coordination and possible catalytic activity. In the first of the title compounds, poly[[μ4‐dihydrobis(pyrazol‐1‐yl)borato‐κ2N,N′]potassium(I)], [K(C6H8BN4)]n, (I), polymeric chains form a two‐dimensional network in the [100] plane. Each potassium ion is coordinated by four N atoms of pyrazolyl ligands, while weak (μ‐BH)...K+ interactions additionally stabilize the structure. The K and B atoms both lie on a mirror plane. In three new structures obtained by disproportionation of the Grignard reagent, each Mg atom is bound to a κ2N,N′‐type ligand, forming the basal plane, and tetrahydrofuran molecules occupy the axial positions. Di‐μ‐chlorido‐bis[dihydridobis(pyrazol‐1‐yl)borato]tris(tetrahydrofuran)dimagnesium(II), [Mg2(C6H8BN4)2Cl2(C4H8O)3], (II), adopts a dimeric structure with μ‐Cl—Mg interactions. One of the Mg atoms has an octahedral coordination, while the other has a distorted square‐pyramidal environment. However, in the bis‐chelate compounds bis[dihydridobis(pyrazol‐1‐yl)borato‐κ2N,N′](tetrahydrofuran‐κO)magnesium(II), [Mg(C6H8BN4)2(C4H8O)], (III), and bis[dihydridobis(pyrazol‐1‐yl)borato‐κ2N,N′]bis(tetrahydrofuran‐κO)magnesium(II), [Mg(C6H8BN4)2(C4H8O)2], (IV), the Mg atoms have square‐pyramidal and octahedral environments, respectively. The Mg atom in (IV) lies on an inversion centre.  相似文献   

14.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

15.
A cadmium chiral coordination polymer, formulated as [Cd(R‐cna)]n ( 1 ‐D) was constructed under hydrothermal method. Single‐crystal X‐ray diffraction analysis indicated that 1 ‐D exhibited a 2D layered structure with a point symbol of (47 · 63). 1 ‐D was further characterized by infrared spectra, powder X‐ray diffraction (PXRD), elemental analysis, thermogravimetric analysis (TGA), and circular dichroism spectra (CD). The second‐harmonic generation (SHG) property was investigated. It was also found that the luminescence of 1 ‐D can be quenched by iron ions and trinitrotoluene, indicating its potential application as luminescence sensing material.  相似文献   

16.
Reactions of Hpymtza [Hpymtza = 5‐(2‐pyrimidyl)tetrazole‐1‐acetic acid] with MnCl2 · 4H2O under different pH conditions, afforded the complexes [Mn(pymtza)2(H2O)4] ( 1 ) and [Mn2(pymtza)2Cl2(EtOH)] · H2O ( 2 ). The compounds were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. Compound 1 shows a mononuclear structure, whereas complex 2 has a 1D chain structure. In compound 1 , the pymtza ligand only acts in a monodentate manner to coordinate to one central MnII atom by one carboxylate atom, In 2 , pymtza acts as tetradentate ligand to connect three MnII ions. Compounds 1 and 2 display 3D networks by hydrogen bonding interactions. Furthermore, the luminescence properties of Hpymtza as well as compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

17.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

18.
We report the optimized syntheses and the solid state structures of the alkali metal tris(pyrazol‐1‐yl)borates M[Me2NBpz3] (M = Na+ ( 1 ), K+ ( 2 ); pz = pyrazol‐1‐yl) and K[PhBpz3] ( 3 ). Even though 1 and 2 consist of polymeric chains in the solid state, it is possible to identify subunits where the [Me2NBpz3]? ion acts as tridentate ligand towards Na+ and K+ and binds via two of its pyrazolyl rings and its dimethylamino nitrogen atom (κ3Npz,Npz,NNMe). In 3 , the ligand [PhBpz3]? employs two pyrazolyl donors and the π‐face of its phenyl substituent for potassium coordination (κ3N,N,C).  相似文献   

19.
In recent years, plentiful lanthanide‐based (TbIII, DyIII, and ErIII) single‐molecule magnets (SMMs) were studied, while examples of other lanthanides, for example, TmIII are still unknown. Herein, for the first time, we show that by rationally manipulating the coordination sphere, two thulium compounds, 1 [(Tp)Tm(COT)] and 2 [(Tp*)Tm(COT)] (Tp=hydrotris(1‐pyrazolyl)borate; COT=cyclooctatetraenide; Tp*=hydrotris(3,5‐dimethyl‐1‐pyrazolyl)borate), can adopt the structure of non‐Kramers SMMs and exhibit their behaviors. Dynamic magnetic studies indicated that both compounds showed slow magnetic relaxation under dc field and a relatively high effective energy barrier (111 K for 1 , 46 K for 2 ). Magnetic diluted 1 a [(Tp)Tm0.05Y0.95(COT)] and 2 a [(Tp*)Tm0.05Y0.95(COT)] even exhibited magnetic relaxation under zero dc field. Relativistic ab initio calculations combined with single‐crystal angular‐resolved magnetometry measurements revealed the strong easy axis anisotropy and nearly degenerated ground doublet states. The comparison of 1 and 2 highlights the importance of local symmetry for obtaining Tm SMMs.  相似文献   

20.
Manganese(II) complex catalysts with hydrotris(pyrazolyl)borate ligands have been examined on their catalytic performance in ethylene polymerization and ethylene/1‐hexene copolymerization. The activities of [Mn(L6)(Cl)(NCMe)] ( 1 ) and [Mn(L10)(Cl)] ( 2 ) activated by Al(i‐Bu)3/[Ph3C][B(C6F5)4] for ethylene polymerization go up to 326 and 11 kg mol (cat?1) h?1, respectively, (L6? = hydrotris(3‐phenyl‐5‐methyl‐1‐pyrazolyl)borate anion, L10? = hydrotris(3‐adamantyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In particular, for ethylene/1‐hexene copolymerization, complex 1 gives high‐molecular‐weight poly(ethylene‐co‐1‐hexene)s with the highest Mw of 439,000 in manganese olefin polymerization catalyst systems. Moreover, the 1‐hexene incorporation by complex 1 seems more efficient than that by [Mn(L3)(Cl)] ( 4 ) (L3? = hydrotris(3‐tertiary butyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In this work, we demonstrated that the coordination geometry and coordination number are also important factors for ethylene polymerization reaction as well as steric hindrances and ligand frameworks in our manganese(II) catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5720–5727, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号