首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacrylamide prepared by dispersion (precipitation) polymerization in an aqueous t‐butyl alcohol (TBA) medium is only partially soluble when the TBA concentrations in the polymerization media are in the range 82 vol % < TBA < 95 vol %. Independent experiments with a soluble (linear) sample of polyacrylamide show that the polymer swells sufficiently in the aforementioned media to lower the glass‐transition temperature of the polymer below the polymerization temperature (50 °C). The anomalous solubility has been attributed to the crosslinking of polymer chains that occurs during the solid‐phase polymerization of acrylamide in the swollen polymer particles. It is postulated that some of the radical centers shift from the chain end to the chain backbone during solid‐phase polymerization by chain transfer to neighboring polymer molecules, and when pairs of such radicals come into close vicinity, crosslinking occurs. However, dispersion (precipitation) polymerization in other media such as aqueous methanol and aqueous acetone yields polymers that are soluble. This result has been attributed to the fact that the polymer radical undergoes a chain‐transfer reaction with these solvents at a much faster rate than with TBA, which overcomes the effect of the polymer‐transfer reaction. Even the addition of as little as 5% methanol to a TBA–water mixture (TBA:water = 85:10) gives rise to a soluble polymer. The chain‐transfer constants for acetone, methanol, and TBA have been determined to be 9.0 × 10?6, 6.9 × 10?6, and 1.48 × 10?6, respectively, at 50 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3434–3442, 2001  相似文献   

2.
There has been an ongoing debate regarding the mechanism that causes rate retardation phenomena observed in some reversible addition‐fragmentation transfer (RAFT) polymerization systems. Some attribute the retardation to slow fragmentation of adduct radicals, others attribute it to fast fragmentation coupled with cross‐termination between propagating and adduct radicals. There exists a difference of six orders of magnitude (10?2 versus 104/s) in the reported values of the fragmentation rate constant (kf0) for virtually similar RAFT systems of PSt? S? C · (Ph)? S? PSt. In this communication, we explain the estimates of kf ~ 104/s and the choices of the rate constant in modeling based on experimental polymerization rate and radical concentration data. The use of kf ~ 10?2/s in the model results in a calculated adduct radical concentration level of 10?4 to 10?3 mol/L, which appears to directly contradict the reported electron spin resonance (ESR) data in the range of <10?6 mol/L. We hope that this open discussion can stimulate more effort to resolve this outstanding difference. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2833–2839, 2003  相似文献   

3.
Methyl methacrylate (MMA) was polymerized in bulk at 70 °C in the presence of an alkoxyamine initiator with low dissociation temperature (the so‐called BlocBuilder?) and increasing amounts of free Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide (SG1). Low final monomer conversions were reached, indicating a loss in radical activity due to side reactions such as irreversible homoterminations between the propagating radicals and β‐hydrogen transfer (also called disproportionation) from a propagating radical to a free‐SG1 nitroxide. Proton NMR and MALDI‐TOF mass spectrometry were used to analyze the polymer chain‐ends and to clearly identify the main mechanism of irreversible termination. In particular, it was shown that all polymer chains were terminated by an alkene function in the presence of a large excess of free SG1, meaning that β‐hydrogen transfer from PMMA propagating radicals to the nitroxide SG1 was the major chain‐stopping event. On the other hand, for a low excess of free SG1, the two termination modes coexisted. Kinetic modeling was then performed using the PREDICI software, and the rate constant of β‐hydrogen transfer, kβHtr, was estimated to be 1.69 × 103 L mol?1 s?1 at 70 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6333–6345, 2008  相似文献   

4.
The effect of treating several commercially important emulsion polymers with different initiator systems was investigated. The initiator system producing highly reactive tert‐butoxyl radicals was able to cause polymer modification. This represented an opportunity to extend the range of properties achievable with a given emulsion polymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3744–3749, 2003  相似文献   

5.
The self‐diffusion of styrene, polystyrene, and 2,2′‐azobisisobutyronitrile has been determined in the bulk polymerization of styrene with pulsed‐gradient spin‐echo nuclear magnetic resonance at 25 °C. Data on small molecules are discussed with respect to recent diffusion models. They can fit self‐diffusion coefficient data of small molecules in dilute or semidilute polymer solutions; in concentrated solutions, however, there is a breakdown. A semiempirical model based on scaling laws is used to describe the self‐diffusion of styrene and 2,2′‐azobisisobutyronitrile over the whole range of concentrations studied. The dependence of the polystyrene self‐diffusion coefficient on the polymer concentration is described with a stretched exponential function, D = D0 exp(?αcν), where α depends on the molecular weight of the polymer and ν depends on the kind of solvent. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1605–1614, 2003  相似文献   

6.
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006  相似文献   

7.
The bulk polymerization of 2‐ethylhexyl acrylate (2‐EHA), induced by a pulsed electron beam, was investigated with pulse radiolysis, gravimetry, and Fourier transform infrared spectroscopy. The roles of the dose rate, pulse frequency, and added acrylic acid (AA) in the polymerization of 2‐EHA were examined at ambient temperature. In the range of 12.6–71.2 Gy/pulse, the polymerization of 2‐EHA was dose‐rate‐dependent: at the same total dose, a lower dose rate yielded a higher conversion. Also, a lower pulse rate gave a higher conversion at the same total dose. The addition of up to 10 wt % AA showed no increase in the conversion of 2‐EHA at a low conversion (8 kGy), but at a higher conversion (16 kGy), a 20 wt % increase in the conversion of 2‐EHA was observed. The estimated values (1.6 ± 0.3) × 10?3 (dm3 s)3/2 mol?1 s?1/2 for kp(G/2kt)1/2 and 2.6 ± 0.8 dm3 s J?1 for 2ktG (where kp is the rate constant of propagation, kt is the rate constant of bimolecular termination, and G is the yield of free radicals) were obtained at relatively low conversions. The reaction rate constant of the addition of 2‐EHA· free radicals to the monomer was measured by pulse radiolysis and found to be 2.8 × 102 mol?1 dm3 s?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 196–203, 2003  相似文献   

8.
N‐Dimethyl‐N‐[2‐(N,N‐dimethylamino)ethyl]‐N‐(1‐methylnaphthyl)ammonium tetrafluoroborate ( I ) was synthesized with the aim of obtaining a versatile photoinitiator for vinyl polymerization in organic solvents and water. Salt I was able to trigger the polymerization of acrylamide, 2‐hydroxyethylmethacrylate and styrene even at very low concentrations of the salt (~1.0 × 10?5 M). Using laser flash photolysis and fluorescence techniques and analyzing the photoproduct distribution, we were able to postulate a mechanism for the photodecomposition of the salt. With irradiation, I undergoes an intramolecular electron‐transfer reaction to form a radical ion pair (RIP). The RIP intermediate decomposes into free radicals. The RIP and the free radicals are active species for initiating the polymerization. Depending on the concentration of the vinyl monomers studied, the initiation mechanism of the polymerization reaction changes. At large monomer concentrations, the RIP state is postulated to trigger the reaction by generating the anion radical of the olefin substrate. At a low monomer concentration, the free radicals produced by the decomposition of I are believed to start the chain reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 901–913, 2002; DOI 10.1002/pola.10166  相似文献   

9.
The 2,6‐spirodicyclohexyl substituted nitroxide, cyclohexane‐1‐spiro‐2′‐(3′,5′‐dioxo‐4′‐benzylpiperazine‐1′‐oxyl)‐6′‐spiro‐1″‐cyclohexane (BODAZ), was investigated as a mediator for controlled/living free‐radical polymerization of styrene. The values of the number‐average molecular weight increased linearly with conversion, but the polydispersities were higher than for the corresponding 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) mediated systems at approximately 2.2 and 1.6 at 100 and 120 °C, respectively. These results were reflected in the rate coefficients obtained by electron spin resonance spectroscopy; at 120 °C, the values of the rate coefficients for polystyrene‐BODAZ alkoxyamine dissociation (kd), combination of BODAZ and propagating radicals (kc), and the equilibrium constant (K) were 1.60 × 10?5 s?1, 5.19 × 106 M?1 s?1, and 3.08 × 10?12 M, respectively. The value of kd was approximately one and two orders of magnitude lower, and that of K was approximately 20 and 7 times lower than for the NO88Bn and TEMPO adducts. These results are explained in terms of X‐ray crystal structures of BODAZ and NO88Bn; the six‐membered ring of BODAZ deviates significantly from planarity as compared to the planar five‐membered ring of NO88Bn and possesses a benzyl substituent oriented away from the nitroxyl group leading to a seemingly more exposed oxyl group, which resulted in a higher kc and a lower kd than NO88Bn. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3892–3900, 2003  相似文献   

10.
Anionic hydrogen‐transfer homopolymerization of N‐isopropylacrylamide (NIPAAm) was carried out using t‐BuOK as an initiator in DMF under microwave irradiation. After 100 W of microwave was irradiated to the reaction mixture at 140°C for 6 h in the temperature control mode, corresponding polymer was obtained in 10% yield. In the case of conventional oil bath heating, by contrast, corresponding polymer was not obtained in similar anionic polymerization conditions. With 100 W and 2.45 GHz of microwave irradiation, formation of the polymer was obtained. Microwave‐assisted anionic hydrogen‐transfer copolymerization of NIPPAm and acrylamide (AAm) led to the formation of thermo‐sensitive copolymers whose thermo‐sensitivity was controlled by the NIPAAm/AAm unit ratio. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2415–2419  相似文献   

11.
The swelling of poly(acrylamide) (PAAm) gels and the osmotic pressure of linear PAAm in aqueous solutions were predominantly affected by anion type and increased according to the lyotropic series ranking of sodium halide anions: F? < (H2O) < Cl? < Br? < I?. The osmotic pressure of PAAm in all examined salt solutions followed the scaling theory, with an exponent of 2.3 ± 0.1. In solutions of a sodium halide series, the value of the pre‐exponential factor seemed to depend on salt concentration, anion radius, and the apparent “anionic‐portion radius” of the water molecule. This radius, extracted from the literature data, marks a transition point of the anion radius effect. Larger anions increase the osmotic pressure of PAAm more significantly as their concentration increases and vice versa. The effects of the anions on the osmotic pressure of PAAm are related to their preferential interactions with the polymer. Iodide, which increased the osmotic pressure of PAAm with respect to its value in pure water, seemed to preferentially adsorb onto the polymer with a binding constant of Kb = 9.7 ± 2.0 M?1 determined by isothermal titration microcalorimetry. However, fluoride, which decreased the osmotic pressure, was preferentially repulsed. The mechanisms of attraction and repulsion were attributed to ion‐water‐polymer interactions and the solvent quality of the hydrated ions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 508–519, 2003  相似文献   

12.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

13.
The reaction of methacryloyl chloride with 5‐aminotetrazole gave the polymerizable methacrylamide derivative 5‐(methacrylamido)tetrazole ( 4 ) in one step. The monomer had an acidic tetrazole group with a pKa value of 4.50 ± 0.01 in water methanol (2:1). Radical polymerization proceeded smoothly in dimethyl formamide or, after the conversion of monomer 4 into sodium salt 4‐Na , even in water. A superabsorbent polymer gel was obtained by the copolymerization of 4‐Na and 0.08 mol % N,N′‐methylenebisacrylamide. Its water absorbency was about 200 g of water/g of polymer, although the extractable sol content of the gel turned out to be high. The consumption of 4‐Na and acrylamide (as a model compound for the crosslinker) during a radical polymerization at 57 °C in D2O was followed by 1H NMR spectroscopy. Fitting the changes in the monomer concentration to the integrated form of the copolymerization equation gave the reactivity ratios r 4‐Na = 1.10 ± 0.05 and racrylamide = 0.45 ± 0.02, which did not differ much from those of an ideal copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4333–4343, 2002  相似文献   

14.
The kinetics of the initiation and propagation of the ring‐opening metathesis polymerization of exo,exo‐5,6‐bis(methoxycarbonyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene catalyzed by Grubbs' catalyst (Cl2(PCy3)2Ru?CHPh) were measured by ultraviolet–visible and 1H NMR spectroscopy, respectively. Activation parameters for these processes were also determined. Although the ratio of the rate constant of initiation to the rate constant of propagation was determined to be less than 1 for this system, this polymerization showed many of the characteristics of a living system, including low polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2125–2131, 2003  相似文献   

15.
Polymerization of acrylamide (M) in the presence of ultrasound and peroxomonosulfate (PMS) was carried out for the first time for various concentration ranges of monomer and initiator and various temperatures at a constant frequency of 1 Mhz. The rate of polymerization Rp was found to increase with increase in the concentration of monomer and initiator and found to depend on [M] and [PMS]1/2. The rate of disappearance of initiator (-d[PMS]/dt) was also followed simultaneously under the experimental conditions and found to increase linearly with increase in [PMS]. A probable reaction mechanism was proposed on the basis of the observed results, and the individual rate constant were evaluated. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2715–2719, 1998  相似文献   

16.
For the first time, electron paramagnetic resonance spectroscopy was used to compare numbers and distributions of radicals produced in frontal free‐radical polymerization of multifunctional acrylates and methacrylates to those produced by bulk free‐radical polymerization. A comparison of radical concentrations was performed for individual polymers and selected copolymers of trimethylolpropane trimethacrylate (TMPTMA), 1,6‐hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate (PETA). Frontally polymerized samples showed a large spike in intensity at the point of initiation. Within a few centimeters, the radical signal diminished to a steady state. The radical concentration remained almost constant over 3 months under helium in flame‐sealed tubes. The types of radicals were similar to those in bulk polymerization. For both TMPTMA and PETA, frontally polymerized samples had significantly higher numbers of radicals than did the bulk‐prepared samples, achieving concentrations as high as 8.7 × 10?3 mol/kg in the frontally prepared samples of TMPTMA. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The Cu0‐mediated single electron transfer‐living radical polymerization of acrylamide and N,N‐dimethyl‐N‐methacryloyloxyethyl‐N‐sulfobutyl ammonium in aqueous at 25 °C using 2‐chloropropionamide as initiator with Cu0 powder/tris‐(2‐dimethylamino ethyl)amine (Me6‐TREN) as catalyst system is studied. The results showed the characteristic of the “living” polymerization that were the Mn of polymers increased linearly with monomer conversion and the ln([M]0/[M]) increased linearly with time too, meanwhile the narrow molecular of weight distributions were found at most cases. Because of the high rate constant of propagation and bimolecular termination of the acrylamide, the external addition of CuCl2 is required to mediate deactivation the early stage of polymerization. In addition, the disproportionation constant of CuIX/L in H2O is higher than in other solvents and the coordination of amino group and CuII takes place easily, so the isopropanol or N,N‐dimethylformamide is added to control the polymerization. High conversions were achieved within short time and the polymers prepared showed good antipolyelectrolyte properties in inorganic salts solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Hetero‐bimetallic Fe(II) alkoxide/aryloxides were evaluated as initiators for the ring‐opening polymerization of rac‐lactide. [(THF)NaFe(OtBu)3]2 ( 1 ) and [(THF)4Na2Fe(2,6‐diisopropylphenolate)4] ( 2 ) (THF = tetrahydrofuran) both polymerized lactide efficiently at room temperature, with complex 1 affording better control over the molecular weight parameters of the resultant polymer. At conversions below 70%, a linear increase in molecular weight with conversion was observed, indicative of a well‐controlled polymerization process. Complex 2 is the first example of a dianionic Fe(II) alkoxide and has been structurally characterized to reveal a distorted square planar FeO4 array in which both Na counterions bridge two aryloxide ligands and are further complexed by two THF ligands. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3798–3803, 2003  相似文献   

19.
An ionic liquid, 1‐ethyl‐3‐(3‐ethyl‐3‐oxetanylmethyl)imidazolium bis(trifluoromethanesulfonyl)imide (OXImTFSI), was synthesized, and its cationic polymerization was examined. The heating of a mixture of 1‐ethylimidazole and 3‐chloromethyl‐3‐ethyloxetane at 90 °C for 48 h yielded 1‐ethyl‐3‐(3‐ethyl‐3‐oxetanylmethyl)imidazolium chloride, which was transformed to a room‐temperature ionic liquid, OXImTFSI, by ion exchange with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). This ionic liquid was polymerized using boron trifluoride ethyl ether complex as a catalyst to give polyOXImTFSI. Five percent weight loss temperature (Td5) of polyOXImTFSI evaluated by thermal gravimetric analysis was 409 °C, indicating the high thermal stability. Glass transition temperature (Tg) of the polymer evaluated by differential scanning calorimetry was ?19 °C, indicating the high flexibility of the material. Ionic conductivity of polyOXImTFSI was determined to be 1.86 × 10?8 S/cm at 23 °C, which was far lower than that of the OXImTFSI monomer (5.05 × 10?4 S/cm). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2986–2990  相似文献   

20.
A method is presented for generation of all surface‐bound radicals on solid polymer surfaces. Thus, secondary amide group of newly synthesized crosslinking comonomer, methacryloyloxyethyl methacrylamide was determined as versatile precursor for generation fixed diradicals on solid microspheres, obtained by copolymerization with methyl methacrylate (MMA) in aqueous suspension. Nitrosoation of the secondary amide groups on the microbeads and followed thermolysis above 90 °C was demonstrated to give surface‐bound radicals, capable of initiating polymerization of vinyl monomers, such as; styrene, MMA, N‐vinyl formamide, and N‐vinyl, 2‐pyrrolidone, as evidenced by H NMR, Fourier transform infrared, thermogravimetric analysis, and differential scanning calorimeter techniques. Appreciable grafting yields (55.1%–286.1%) and low free‐homopolymer formation (7.2%–19.7%) were noted within 6 h of the grafting at 100 °C in each case. This strategy involving the use of amide functional crosslinker seemed to be generally applicable to generate surface‐bound radicals for surface‐initiated polymerization from various solid substrates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号