首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe the synthesis and characterization of a thermoreversibly cross-linked biopolymer microgel based on protein, DNA, and peptide nucleic acid (PNA) components. The DNA assembles into a trifunctional three-way junction (TWJ) with single-stranded overhangs. PNA oligomers complementary to these overhangs and bearing terminal biotin groups hybridize to the DNA TWJ and simultaneously bind to the tetrafunctional protein avidin, leading to a cross-linked system. Dynamic light scattering experiments reveal that micron-sized particles are formed. Static light scattering was used to characterize the internal structure of these microgels, which were found to have a fractal dimension of 1.85, indicative of a loose network structure. Heating disrupts the weakest component in the system, namely the PNA-DNA hybrid, resulting in dissolution of the microgel, while cooling restores the hydrogen bonding leading to reassembly of the microgel. Variation of the nucleotide sequence permits tuning of the gelation temperature with fine control.  相似文献   

2.
A series of fractions of a hyperbranched polyester in deutero tetrahydrofuran solution were investigated by small‐angle neutron scattering. Concentrations of polymer from 2 to 5% w/v were used, and the molecular parameters were obtained from Zimm plots of the data. Second virial coefficients were positive, and these values were confirmed by dilute‐solution light scattering on a small number of fractions with deutero tetrahydrofuran as a solvent. The small‐angle neutron scattering data exhibited the general features predicted for the particle scattering functions of nonrandomly branched polymers, but an exact fit of the theoretical equation to the data could not be obtained for all fractions of the hyperbranched polymer, particularly those of high molecular weight. Excluded volume effects were cited as a possible cause for this disagreement. A fractal dimension of ~2.5 was obtained from the scattering vector dependence of the differential scattering cross section of the polymer in deutero tetrahydrofuran solution, which agreed with the scaling exponent for the dependence of the radius of gyration on weight‐average molecular weight. Hydrogenous tetrahydrofuran solutions of the hyperbranched polymer exhibited negative second virial coefficients that were attributed to isotopic influences on the thermodynamic properties of the polymer–solvent combination. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1352–1361, 2003  相似文献   

3.
The aggregation of pachyman, β-(1 → 3)-D -glucan (Mw = 1.68 × 105) from the Poria cocos mycelia, was investigated using static and dynamic laser light scattering (LLS) in dimethyl sulfoxide (DMSO) containing about 15% water, which leads to large aggregates. Both the time dependence of hydrodynamic radius and the angle dependence of the scattering intensity were used to calculate the fractal dimension (df) of the aggregates. The aggregation rate and average size of aggregates increase dramatically with increasing the polymer concentration from 1.7 × 10−4 g/mL to 8.6 × 10−4 g/mL, and with the decrease of the solvent quality, that is, water content from 13 to 15%. In the cases, the fractal dimensions change from 1.94 to 2.43 and from 1.92 to 2.54, respectively, suggesting that transforms of aggregation processes: a slow process called reaction-limited cluster aggregation (RLCA) to a fast process called diffusion-limited cluster aggregation (DLCA) in different polymer concentrations and water content. The fractal dimensions above 2 of the fast aggregation is larger than the 1.75 predicted for the ideal DLCA model, suggesting that the aggregation involves a restructuring process through the interchain hydrogen bonding interaction. There are no aggregates of pachyman in DMSO without water, but aggregates formed in the DMSO containing 15% water at 25°C as a compact structure. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3201–3207, 1999  相似文献   

4.
Dynamic and static light scattering were applied to the determination of the stability ratio and fractal dimension of kaolinite (KGa-2) at different kaolinite or/and electrolyte concentrations at pH 9.5. Dynamic light scattering was used to measure the kinetics of early stage aggregation to determine the stability ratio, W, as well as the cluster sizes which determine the fractal regime. Static light scattering was used to measure the fractal dimension, D(f). Results show that the two classes of "universality" (Lin et al. Nature 1989, 339, 360) characterizing the diffusion- and reaction-limited regimes of cluster-cluster aggregation do apply to colloidal kaolinite as limit cases when W approximately 1 or W > 100, respectively. In the intermediate regime where 5 < W < 100, the growth of the aggregate radius showed a power-law behavior similar to diffusion-limited cluster aggregation. For the intermediate aggregation regime, a scaling relation between fractal dimension and stability ratio, reflecting a continuous increase in particle packing density in the aggregate as the sticking probability of particles was reduced, was demonstrated.  相似文献   

5.
Poly(N,N‐diethylacrylamide) (PDEA) possesses a lower critical solution temperature (LCST) in aqueous media. The solution properties of PDEA at various temperatures have been characterized with techniques such as rheology and dynamic light scattering. There is a decrease in the coil size before the phase transition due to a coil‐to‐globule transition. At the LCST, rheological and dynamic light scattering studies have also confirmed an aggregation phenomenon. This aggregation modifies the rheological properties of the polymer solutions. High frequencies hinder the phase‐transition process and reduce the LCST of the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1627–1637, 2003  相似文献   

6.
We investigate experimentally the structural properties of colloidal gels, formed under both diffusion-limited and reaction-limited aggregation conditions, using light scattering measurements and compare the results with the literature Monte Carlo (MC) simulations. The scattering structure factors have been measured for the two classes of gels in the range of the particle volume fractions between 0.02 and 0.07. From these, the corresponding fractal dimension values have been estimated. These have been found to be in good agreement with those estimated from the structure factors computed from MC simulated gels. On the basis of our previous research (Lattuada et al. Langmuir 2003, 19, 6312), this confirms that the scattering structure factor of a gel provides erroneously a small fractal dimension value, which decreases as the particle volume fraction increases. Furthermore, it is observed that the average size of the fractal clusters is larger in real gels than in simulated gels.  相似文献   

7.
The morphology and distribution of zirconium oxide and zirconium phosphates in a matrix of sulfonated poly(ether ether ketone) (SPEEK) were investigated with anomalous small‐angle X‐ray scattering (ASAXS) and electron microscopy. ASAXS revealed that ZrO2 was distributed in the SPEEK matrix in the form of nanoparticles smaller than 13 Å. A decrease in the conductivity suggested that the sulfonic groups were bound to the zirconium oxo species at the particle surface. Furthermore, two kinds of membranes containing zirconium phosphate were investigated. In one case, the phosphate was directly dispersed in the polymer solution for the casting of the membrane. In the other case, the phosphate was previously treated with n‐propyl ammonium and polybenzimidazole. From ASAXS data, the fractal dimension could be estimated. Mass‐fractal behavior was confirmed for the SPEEK membrane containing previously exfoliated zirconium phosphate, with aggregates of 6.3–165 Å. Surface‐fractal behavior was detected for membranes with untreated phosphates, with aggregates of 6.4–185 Å. The untreated phosphates caused an increase in the permeability, without changing the proton conductivity much. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 567–575, 2004  相似文献   

8.
The immobilization of reversible addition–fragmentation chain transfer (RAFT) agents on silica for surface‐initiated RAFT polymerizations (SI‐RAFT) via the Z‐group approach was studied systematically in dependence of the functionality of the RAFT‐agent anchor group. Monoalkoxy‐, dialkoxy‐, and trialkoxy silyl ether groups were incorporated into trithiocarbonate‐type RAFT agents and bound to planar silica surfaces as well as to silica nanoparticles. The immobilization efficiency and the structure of the bound RAFT‐agent film varied strongly in dependence of the used solvent (toluene vs. 1,2‐dimethoxyethane) and the anchor group functionality, as evidenced by atomic force microscopy, transmission electron microscopy, dynamic light scattering, and UV/Vis spectroscopy. Surface‐initiated RAFT polymerizations using functionalized silica nanoparticles revealed that grafted oligomers, which often occur in SI‐RAFT, are not formed within the crosslinked structures that originate from the immobilization, and that RAFT‐agent films that show less aggregation during the immobilization are more efficient during SI‐RAFT in terms of polymer grafting density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 103–113  相似文献   

9.
A series of polyethers consisting of a conjugated segment connected with a nonconjugated spacer were synthesized and characterized. On the basis of the chemical structure of the conjugated moiety, controllable light emission was obtained. The thermal properties were influenced from the structure of the conjugated segment, the type of substituents used, and the length of the flexible spacer used. Additionally, coil‐rod‐coil block copolymers having conjugated segments as the rod block were prepared with atom transfer radical polymerization of α,ω‐modified conjugated oligomers. The optical properties of these copolymers were examined with respect to their aggregation behavior. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2485–2491, 2003  相似文献   

10.
Amphiphilic block copolymers of poly(acrylic acid‐b‐butyl acrylate) were prepared by reversible addition–fragmentation chain transfer polymerization in a one‐pot reaction. These copolymers were characterized by NMR, static and dynamic light scattering, tensiometry, and size exclusion chromatography. The aggregation characteristics of the copolymers corresponded to those theoretically predicted for a star micelle. In a butyl acrylate and methyl methacrylate emulsion polymerization, low amounts of these copolymers could stabilize latices with solid contents up to 50%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 684–698, 2003  相似文献   

11.
Novel triblock copolymers having self‐complementary hydrogen‐bonding units were synthesized by using reversible addition–fragmentation transfer polymerization. As characterized by dynamic light scattering and atomic force microscopy, these polymers formed noncovalently crosslinked polymer particles and showed an aggregation behavior by intermolecular and intramolecular interactions. At low concentration, polymers formed nanoparticles, and the particle diameter increased with increasing polymer concentration. Well‐ordered hexagonal microstructures were prepared by “Breath Figure” technique with the triblock copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Aggregation process of isotactic poly(methyl methacrylate) (i-PMMA) has been studied extensively for many years, and considerable progress has been made in both experimental and theoretical studies. They are, however, seldom sustained by real-space observations of the underlying morphology. In this paper, the aggregation process of i-PMMA in concentrated acetone solutions and the fractal structure of the resulting three-dimensional clusters were characterized on the basis of real-space AFM observations of their two-dimensional projection. It was found that spherical multiple-chain particles formed upon collapse and aggregation of the involving chains as a whole during quenching the solution to room temperature. By keeping the solution at room temperature, the initially formed particles stick together upon contact to form larger particles through reassembling very slowly. The succeeding collision of the enlarged spherical particles leads to the formation of small clusters. These newly formed small clusters grow when they meet with other clusters or single Brownian particles. This leads to the formation of large clusters with fractal dimension of 1.95$±0.05, which suggest a reaction-limited cluster aggregation of i-PMMA in a concentrated acetone solution. This is in accordance with the conclusion obtained by light scattering measurements.  相似文献   

13.
Using small-angle light scattering we show that a new phase of soot with size ca. 10 microm and a fractal dimension of D approximately equal to 2.6 exists in laminar diffusion flames for a wide range of heavily sooting fuels. This new phase appears to be a supramicrometer extension of the well-known submicrometer, D approximately equal to 1.8 phase of soot formed via diffusion-limited cluster aggregation (DLCA). The occurrence of this new soot phase correlates with an empirical sooting index for fuels. This supports a creation scenario in which these supramicrometer aggregates are created via a percolation of the submicrometer, D approximately equal to 1.8 aggregates.  相似文献   

14.
Two ABA‐type liquid crystalline oligomers were newly synthesized, where A was a mesogenic group and B was polyolefin whose molecular mass was 2470. The A segment was prepared from p‐hydroxyl benzoic acid and terephalic acid. The elastomeric films, whose moduli at 20% elongation were 0.4–1.0 MPa, were obtained by solution casting of the ABA‐type oligomers. Dynamic mechanical analysis and differential scanning calorimetry measurement showed the glass transition of amorphous polyolefin segments, the melting of mesogenic groups, and the meso‐to‐isotropic transition of liquid crystalline phase. The formation of microphase‐separated structures was confirmed by a small‐angle X‐ray scattering (SAXS) measurement. The presence of hexagonal cylinder domains, which were attributed to the aggregation of mesogenic groups in the polyolefin matrix, was also detected by SAXS. These liquid crystalline oligomers showed anisotropy under the crossed Nicoles, and the textures were observed to be nematic. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2247–2253, 2000  相似文献   

15.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

16.
Low molecular weight (MW) polystyrenes were synthesized by radical polymerization in the presence of catalytic chain‐transfer agents. Synthetic conditions are controlled to produce molecules containing one methyl group at one end as well as a double bond at the other end, capped with a phenyl group. Individual oligomers were separated by liquid chromatography, and the properties were analyzed using NMR, ultraviolet–visible (UV–vis) spectroscopy, and size exclusion chromatography with light scattering. The UV–vis spectra, proton NMR spectra, and differential refractive‐index increments exhibit an MW dependence of up to six–eight monomer units. The obtained dependencies can be used for precise characterization of the molecular weight distribution of polystyrene obtained by catalytic chain transfer. The double‐bonded end groups were found to be exclusively in the transconfiguration for all oligomers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1099–1105, 2001  相似文献   

17.
The synthesis and characterization of a new photocleavable crosslinker is presented here. Dual stimuli‐responsive P(VCL‐co‐NHMA) microgels were prepared by precipitation polymerization of vinylcaprolactam (VCL) with N‐hydroxymethyl acrylamide (NHMA) and the new crosslinker. The microgels had distinct temperature sensitivity as observed in the case of PVCL‐based particles and their volume phase transition temperature (VPTT) shifted to higher temperature with increasing NHMA content. Photolytic degradation experiments were investigated by irradiation with UV light, which led to microgel disintegration caused by cleavage of the photolabile crosslinking points. The degradation behavior of the microgels was conducted with respect to degradation rates by means of the relative turbidity changes. Hence, the microgels could totally degrade into short linear polymers by UV light, thus representing a great potential as new light and temperature dual responsive nanoscale materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1676–1685  相似文献   

18.
Growth behavior of silica in an acid catalyzed sol-gel process from silicon alkoxide in the presence of poly(ethylene oxide), PEO, was investigated by in situ small angle X-ray scattering, SAXS, and 29Si NMR measurements. The results of SAXS, that aggregation and gel formation behaviors of silica were affected by the presence of PEO, suggested a strong attractive interaction between silica oligomers and PEO. A possible reaction scheme of silica in the presence of PEO is as follows; (1) PEO and small silica oligomers coexist in the solution without specific interaction just after hydrolysis of the silicon alkoxide. (2) With the progress of condensation, a ramified aggregated complex between PEO and silica oligomers is formed, which is characterized by larger apparent value of radius of gyration and smaller fractal dimension than in the PEO-free system. (3) After gelation, the fractal dimension of scatterers remains to be smaller than that in the PEO-free system, because PEO associated with the silica network inhibits aggregation within the gel networks. Furthermore, PEO inhibits the condensation in the aging and in the drying process, leading to less strongly crosslinked dry gel. A temporal maximum in the time evolution of Rg was observed for the samples separated into two phases with their characteristic domain size being larger than several micrometers. This is considered to be a phenomenon related to increase and divergence of correlation length near and at the critical point.  相似文献   

19.
Liquid–liquid thermally induced phase separation of the polymer‐diluent system of poly(ethylene‐co‐vinyl alcohol) (EVOH)‐glycerol was examined under light scattering. For EVOH with an ethylene content of 38 mol % (EVOH38), maxima of the scattered light intensity were observed that indicated that phase separation occurred by the spinodal decomposition (SD). The growth of the structures formed by the general liquid–liquid phase separation obeyed a power‐law scaling relationship in SD. For EVOH with an ethylene content of 32 mol % (EVOH32), the liquid–liquid phase separation resulted from the polymer crystallization. In this case, the structure growth showed the characteristic behavior in which the crystalline particles were initially formed, and then the droplets formed by the liquid–liquid phase separation induced by the crystallization grew rapidly. Furthermore, the growth of the droplet by the phase separation was followed by an optical microscope measurement at a constant cooling rate. The phase‐separated structure formed after the crystallization can grow faster than that formed by the normal liquid–liquid phase separation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 194–201, 2003  相似文献   

20.
The structure and dynamics of crosslinked nanoparticles (microgels) made out of hydroxypropylcellulose (HPC) polymer chains were studied using dynamic light scattering spectroscopy. The microgel light scattering spectra were found to be highly nonexponential requiring a spectral time moment analysis in which the spectra were fit to a sum of stretched exponentials. Each term offers three parameters for analysis and represents a single spectral mode. At room temperature microgel spectra reveal three modes. Two faster modes are almost diffusive and correspond to apparent sizes of 25 and 450–650 nm. The slowest mode is independent of scattering angle and is reminiscent of the slow polymer mode observed in identical non‐crosslinked polymer solutions. When solution temperature is varied from 23 to 45°C and back, the microgel undergoes a reversible volume phase transition between 40 and 45°C. According to the time‐moment analysis, above the transition temperature two faster modes collapse into one with apparent hydrodynamic radius of 100–150 nm, while the slow mode remains largely unchanged. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 771–781, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号