首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] and (n‐Bu4N)2[PtF4(ox)] By treatment of trans‐(n‐Bu4N)2[PtCl2(ox)2] and (n‐Bu4N)2[PtCl4(ox)] with XeF2 in propylene carbonate cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] ( 1 , 2 ) and (n‐Bu4N)2[PtF4(ox)] ( 3 ) are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of trans(n‐Bu4N)2[PtF2(ox)2] ( 2 ) (tetragonal, space group P42/n, a = 15.5489(9), b = 15.5489(9), c = 17.835(1)Å, Z = 4) und Cs2[PtF4(ox)] ( 3 ) (monoclinic, space group C2/m, a = 14.5261(7), b = 6.2719(4), c = 9.6966(9)Å, β = 90.216(8)°, Z = 4) reveal complex anions with nearly D2h and C2v point symmetry. The average bond lengths in the symmetrical coordinated axes are Pt—F = 1.93 ( 2 , 3 ) and Pt—O = 1.987 ( 2 ) and in the F—Pt—O′‐axes Pt—F = 1.957 and Pt—O′ = 1.977Å ( 3 ). The oxalato ligands are nearly planar with a maximum displacement of the ring atoms of 0.05 ( 2 ) und 0.01Å ( 3 ) to the calculated best planes. In the vibrational spectra the symmetric and antisymmetric PtF stretching vibrations are observed at 583 and 586 ( 2 ) and 576 and 568 cm—1 ( 3 ). The PtF modes appear at 565 and 562 ( 1 ) and 560 cm—1 ( 3 ). The PtO and PtO′ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determinations ( 2 , 3 ) and estimated data ( 1 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtF) = 3.55 ( 2 ) and 3.38 ( 3 ), fd(PtF) = 3.23 ( 1 ) and 3.20 ( 3 ), fd(PtO) = 2.65 ( 1 ) and 2.84 ( 2 ) and fd(PtO′) = 2.97 ( 1 ) and 3.00 mdyn/Å ( 3 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 8485 ( 1 ), 8597 ( 2 ) and 10048 ppm ( 3 ), δ(19F) = —350 ( 2 ) and —352 ( 3 ) and δ(19F) = —323 ( 1 ) and —326 ppm ( 3 ) with the coupling constants 1J(PtF) = 1784 ( 2 ) and 1864 ( 3 ) and 1J(PtF) = 1525 ( 1 ) and 1638 Hz ( 3 ).  相似文献   

2.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (n‐Bu4N)2[PtX4(ox)], X = Cl, Br By oxidation of (n‐Bu4N)2[PtX2(ox)], X = Cl, Br, with Cl2 or Br2 in dichloromethane (n‐Bu4N)2[PtCl4(ox)] ( 1 ) and (n‐Bu4N)2[PtBr4(ox)] ( 2 ) are formed. The crystal structure of [(C5H5N)2CH2][PtCl4(ox)] (monoclinic, space group C2/m, a = 15.562(1), b = 13.779(1), c = 10.168(1)Å, ß = 128.099(9)°, Z = 4) reveals complex anions with nearly C2v point symmetry. The bond lengths in the Cl′‐Pt‐O˙ axes are Pt‐Cl′ = 2.287 and Pt‐O˙ = 2.048 and in the Cl‐Pt‐Cl axis Pt‐Cl = 2.314Å. The oxalato ligand is nearly plane with an O‐C‐C‐O torsion angle of 0.5°. In the vibrational spectra the PtX stretching vibrations are observed at 328 and 353 ( 1 ) and 201 and 212 cm—1 ( 2 ). The PtX′ modes appear at 360 and 343 ( 1 ) and 227 and 238 cm—1 ( 2 ). The PtO˙ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 2.08, fd(PtCl′) = 2.29, fd(PtBr) = 1.56, fd(PtBr′) = 2.02 and fd(PtO˙) = 2.46 ( 1 ) and 2.35 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 5623.0 ( 1 ) and 4536.1 ( 2 ).  相似文献   

3.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S, Se By exposure of trans‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S and Se, in dichloromethane cis‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) and cis‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structure of 1 (triclinic, space group P1¯, a = 10.789(1), b = 11.906(1), c = 18.580(1)Å, α = 85.619(10), β = 85.272(10), γ = 75.173(10)°, Z = 2) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both S′‐Pt‐O˙ axes are Pt‐S′ = 2.321 and Pt‐O˙ = 2.048 and in the O‐Pt‐O axis Pt‐O = 2.007Å. The oxalato ligands are nearly plane with O‐C‐C‐O torsion angles of 1.4 — 3.9°. The via S′ bound linear thiocyanate groups are coordinated with Pt‐S′‐C angles of 102.6°. In the vibrational spectra the PtE′ stretching vibrations are observed at 327 — 330 ( 1 ) and 217 — 231 cm—1 ( 2 ). The PtO˙ and PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400 — 800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS′) = 2.08, fd(PtSe′) = 1.78, fd(PtO˙) = 2.45 ( 1 ) and 2.27 ( 2 ) and fd(PtO) = 2.65 ( 1 ) and 2.60 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 4925.9 ( 1 ), 4783.0 ( 2 ) and δ(77Se) = 161.7 ppm with the coupling constant 1J(SePt) = 366.2 Hz.  相似文献   

4.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[PtX2(ox)2], X = Cl, Br, I By treatment of [PtCl6]2— with C2O42— (ox2—) in water cis‐(n‐Bu4N)2[PtCl2(ox)2] ( 1 ) is formed which has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. Exposure of trans‐(n‐Bu4N)2[PtX2(ox)2], X = Br and I, in dichloromethane yields cis‐(n‐Bu4N)2[PtBr2(ox)2] ( 2 ) and cis‐(n‐Bu4N)2[PtI2(ox)2] ( 3 ). The crystal structure of 3 (monoclinic, space group P21/c, a = 19.132(1), b = 14.377(1), c = 18.099(1) Å, ß = 113.734(8)°, Z = 4) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both I′‐Pt‐O axes are Pt‐I′ = 2.599 and Pt‐O = 2.052 and in the O—Pt—O axis Pt—O = 2.016 Å. The oxalato ligands are nearly plane with O—C—C—O torsion angles of 0.2—3.6°. In the vibrational spectra the PtX′ stretching vibrations are observed at 362 and 365 ( 1 ), 231 and 240 ( 2 ) and 172 and 183 cm—1 ( 3 ). The PtO and PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 3 ) and estimated data ( 1 , 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl′) = 2.35, fd(PtBr′) = 2.20, fd(PtI′) = 1.81 and fd(PtO) = 2.57 ( 1 ), 2.42 ( 2 ) and 2.15 ( 3 ) and fd(PtO) = 2.65 mdyn/Å. Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 6438.8 ( 1 ), 5988.8 ( 2 ) and 4917.3 ppm ( 3 ).  相似文献   

5.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

6.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of trans ‐( n ‐Bu4N)4[Pt(ECN)2(ox)2], E = S, Se By reaction of (n‐Bu4N)2[Pt(ox)2] with (SCN)2 and (SeCN)2 in dichloromethane trans‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) und trans‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structures of 1 (triclinic, space group P1, a = 10.219(2), b = 11.329(2), c = 12.010(3) Å, α = 114.108(15), β = 104.797(20), γ = 102.232(20)°, Z = 1) and 2 (triclinic, space group P1, a = 10.288(1), b = 11.332(1), c = 12.048(1) Å, α = 114.391(9), β = 103.071(10), γ = 102.466(12)°, Z = 1) reveal, that the compounds crystallize isotypically with centrosymmetric complex anions. The bond lengths are Pt–S = 2.357, Pt–Se = 2.480 and Pt–O = 2.011 ( 1 ) und 2.006 Å ( 2 ). The oxalato ligands are nearly plane with O–C–C–O torsion angles of 1.7–3.6°. The via S or Se coordinated linear groups are inclined between both oxalato ligands with Pt–E–C angles of 100.4 (E = S) and 97.4° (Se). In the vibrational spectra the PtE stretching vibrations are observed at 299–314 ( 1 ) and 189–200 cm–1 ( 2 ). The PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400–800 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.75, fd(PtSe) = 1.35 and fd(PtO) = 2.77 mdyn/Å. The NMR shifts are δ(195Pt) = 5435.2 ( 1 ), 5373.7 ( 2 ) and δ(77Se) = 353.2 ppm with the coupling constant 1J(SePt) = 37.4 Hz.  相似文献   

7.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

8.
Crystal Structures, Spectroscopic Analysis, and Normal Coordinate Analysis of ( n ‐Bu4N)2[M(ECN)4] (M = Pd, Pt; E = S, Se) The reaction of (NH4)2[PdCl4] or K2[PtCl4] with KSCN or KSeCN in aqueous solutions yields the complex anions [Pd(SCN)4]2–, [Pt(SCN)4]2– and [Pt(SeCN)4]2–, which are converted into (n‐Bu4N) salts with (n‐Bu4N)HSO4. (n‐Bu4N)2[Pd(SeCN)4] is formed by treatment of (n‐Bu4N)2[PdCl4] with (n‐Bu4N)SeCN in acetone. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Pd(SCN)4] (monoclinic, space group P21/n, a = 13.088(3), b = 12.481(2), c = 13.574(3) Å, β = 91.494(15)°, Z = 2), (n‐Bu4N)2[Pd(SeCN)4] (monoclinic, space group P21/n, a = 13.171(2), b = 12.644(2), c = 13.560(2) Å, β = 91.430(11)°, Z = 2) and (n‐Bu4N)2[Pt(SeCN)4] (monoclinic, space group P21/n, a = 13.167(2), b = 12.641(1), c = 13.563(2) Å, β = 91.516(18)°, Z = 2) reveal, that the compounds crystallize isotypically and the complex anions are centrosymmetric and approximate planar. In the Raman spectra the metal ligand stretching modes of (n‐Bu4N)2[Pd(SCN)4] ( 1 ) and (n‐Bu4N)2[Pt(SCN)4] ( 3 ) are observed in the range of 260–303 cm–1 and of (n‐Bu4N)2[Pd(SeCN)4] ( 2 ) and (n‐Bu4N)2[Pt(SeCN)4] ( 4 ) in the range of 171–195 cm–1. The IR and Raman spectra are assigned by normal coordinate analysis using the molecular parameters of the X‐ray determination. The valence force constants are fd(PdS) = 1.17, fd(PdSe) = 1.17, fd(PtS) = 1.44 and fd(PtSe) = 1.42 mdyn/Å. The 77Se NMR resonances are 23 for 2 , –3 for 4 and the 195Pt NMR resonances 549 for 3 and 130 ppm for 4 .  相似文献   

9.
Synthesis, Crystal Structures and Vibrational Spectra of Linkage Isomeric Pentabromorhodanoosmates(IV) By treatment of (n‐Bu4N)2[OsBr5I] with (SCN)2 in dichloromethane the linkage isomers (n‐Bu4N)2[OsBr5(NCS)] and (n‐Bu4N)2[OsBr5(SCN)] are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X‐ray structure determinations on single crystals of (n‐Bu4N)2[OsBr5(NCS)] (monoclinic, space group P21/n, a = 10.955(5), b = 11.649(5), c = 35.478(5) Å, β = 91.92(1)°, Z = 4) and (CH2Py2)[OsBr5(SCN)] (monoclinic, space group P21/n, a = 12.244(2), b = 10.134(3), c = 15.882(4) Å, β = 107.91(2)°, Z = 4) have been performed. The thiocyanate group is coordinated with the Os–N–C angle of 168° for N bonding and the Os–S–C angle of 110° for S bonding. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra of both linkage isomers are assigned by normal coordinate analysis. The valence force constants are fd(OsN) = 1,81 and fd(OsS) = 1,42 mdyn/Å.  相似文献   

10.
Ruthenium(II) Phthalocyanines: Preparation and Properties of Di(halo)phthalocyaninatoruthenate(II) [Ru(Py)2Pc2?] reacts with molten (nBu4N)X forming stable, green (nBu4N)2[Ru(X)2Pc2?] (X = Cl, Br). The cyclovoltammogram shows a quasireversible redoxprocess for the metal oxidation at E1/2(I) = ?0.02 V (X = Cl) resp. 0.05 V (X = Br) and for the first ringoxidation at E1/2(II) = 0.70 V. The typical π-π*-transitions (B < Q < N) of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. With respect to RuIII phthalocyanines B is shifted significantly to higher, Q, N to lower energy. The strong extra-band at 24.2 kK is diagnostic for these RuII phthalocyanines. The vibrational spectra are typical for the Pc2? ligand with D4h symmetry, too, and bands at 513, 909, 1 171 und 1 329 cm?1 in the m.i.r. spectrum are specific for hexa-coordinated low spin RuII. In the Raman spectrum with excitation at ~480 nm the intensity of the totally symmetrical Ru? X stretching vibration at 266 cm?1 (X = Cl) resp. 168 cm?1 (X = Br) together with a progression of up to three overtones is selectively resonance Raman enhanced. The asymmetrical Ru? X stretching vibration is observed in the f.i.r. spectrum at 272 cm?1 (X = Cl) resp. 215 cm?1 (X = Br).  相似文献   

11.
A series of heteropentanuclear oxalate‐bridged Ru(NO)‐Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ‐ox)(NO)}4], where Ln=Y ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] ( 1 ) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1 , 2 , and 5 were in addition analyzed by X‐ray crystallography, 1 by Ru K‐edge XAS and 1 and 2 by 13C NMR spectroscopy. X‐ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2? are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ‐ox)(NO)}4]5? (Ln=Y, Dy). While YIII is eight‐coordinate in 2 , DyIII is nine‐coordinate in 5 , with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium‐lanthanide complexes 2 – 5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC‐5) and compared with those obtained for the previously reported Os(NO)‐Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 )). Complexes 2 – 5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6 – 9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP‐MS data, indicating five‐ to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.  相似文献   

12.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se).  相似文献   

13.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

14.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

15.
Preparation, Crystal Structure, and Normal Coordinate Analysis of Linkage Isomeric Pentachloroiodoselenocyanatoosmates(IV). Crystal Structure of trans‐(PPh4)2[OsCl4I(NCSe)] By treatment of the solution of (n‐Bu4N)2[OsCl5I] in dichloromethane with suspended Pb(SeCN)2 the linkage isomers trans‐(n‐Bu4N)2[OsCl4I(NCSe)] ( 1 ) and trans‐(n‐Bu4N)2[OsCl4I(SeCN)] ( 2 ) are formed, which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐Ray structure determination on a single crystal of trans‐(PPh4)2[OsCl4I(NCSe)] (triclinic, space group P1¯, a = 10.8950(13), b = 11.076(2), c = 20.980(2)Å, α = 96.940(10), β = 98.747(9), γ = 104.419(11)°, Z = 2) reveals, that the nearly linear selenocyanate group in trans position to the iodine atom is coordinated with the Os‐N‐C angle of 171.1°. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra of both linkage isomers are assigned by normal coordinate analysis. The valence force constants are fd(OsN) = 1.70 und fd(OsSe) = 1.15 mdyn/Å.  相似文献   

16.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

17.
OsII Phthalocyaninates(2?): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato-(2?)osmate(II) Soluble, blue tetra(n-butyl)ammonium (halo)(carbonyl)phthalocyaninato(2?)osmate(II), (nBu4N)[Os(X)(CO)Pc2?] (X = Cl, Br, I) is obtained by the reaction of [Os(THF)(CO)Pc2?] (THF: tetrahydrofurane) with (nBu4N)X in THF. In the cyclovoltammograms there are three reversible electrode processes at ?1.21 ± 0.01, 0.18 ± 0.04 and 0.65 ± 0.01 V assigned to the three redox pairs Pc2?/Pc3?, OsII/OsIII and Pc2?/Pc3?. In the electronic absorption spectra only the intense B and Q regions are observed at ~ 15800 resp. 27500, 33000 cm?1. The infrared and resonance Raman spectra closely resemble those of other phthalocyaninates(2?) of low valent osmium. In the infrared spectrum v(C? O) is detected at 1896 ± 4 cm?1 and v(Os? X) at 260 (X = Cl), 175 (X = Br) or 143 cm?1 (X = I).  相似文献   

18.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [PtX2ox]2−, X = Cl, Br By treatment of [PtX4]2— (X = Cl, Br) with C2O42— (ox2—) in water [PtCl2ox]2— and [PtBr2ox]2— are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of [(C5H5N)2CH2][PtCl2ox]·2H2O ( 1 ) (orthorhombic, space group Pbca, a = 18.451(1), b = 18.256(1), c = 19.913(1)Å, Z = 16) and [(C5H5N)2CH2][PtBr2ox] ( 2 ) (monoclinic, space group P21/c, a = 7.249(1), b = 10.180(1), c = 21.376(1)Å, β = 93.415(9)°, Z = 4) reveal nearly planar complex anions with C2v point symmetry. The bond lengths are Pt‐Cl = 2.286, Pt‐Br = 2.405 und Pt‐O = 2.016 ( 1 ) und 2.030Å ( 2 ). In the vibrational spectra the PtX stretching vibrations are observed at 335 and 336 ( 1 ) and 219 and 231 cm—1 ( 2 ). The PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 350 — 800 cm—1. Using the molecular parameters of the X‐Ray determinations the IR and Raman spectra of the (n‐Bu4N) salts are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.97, fd(PtBr) = 1.78 and fd(PtO) = 2.48 ( 1 ) and 2.38 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 3603.9 ( 1 ) and 3318.1 ppm ( 2 ).  相似文献   

19.
Osmium(II) Phthalocyanines: Preparation and Properties of Di(acido)phthalocyaninatoosmates(II) “H[Os(X)2Pc2?]” (X = Br, Cl) reacts in basic medium or in the melt with (nBu4N)X forming less stable, diamagnetic, darkgreen (nBu4N)2[Os(X)2Pc2?]. Similar dicyano and diimidazolido(Im) complexes are formed by the reaction of “H[Os(Cl)2Pc2?]” with excess ligand in the presence of [BH4]?. The cyclic voltammograms show up to three quasireversible redoxprocesses: E1/2(I) = 0.13 V (X = CN), ?0.03 V (Im), ?0.13 V (Br) resp. ?0.18 V (Cl) is metal directed (OsII/III), E1/2(II) = 0.69 V (Cl), 0.71 V (Br), 0.83 V (CN), 1.02 V (Im) is ligand directed (Pc2?/?) and E1/2(III) = 1.17 V (Cl) resp. 1.23 V (Br) is again metal directed (OsIII/IV). Between the typical “B” (~16.2 kK) and “Q” (~29.4 kK), “N regions” (~34.1 kK) up to seven strong “extra bands” of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. Within the row CN > Im > Br > Cl, most of the bands are shifted slightly, the “extra bands” considerably more to lower energy in correlation with E1/2(I). The vibrational spectra are typical for the Pc2? ligand with D4h symmetry. M.i.r. bands at 514, 909, 1 173 and 1 331 cm?1 are specific for hexa-coordinated low spin OsII phthalocyanines. In the resonance Raman (r.r.) spectra polarized, depolarized or anomalously polarized deformation and stretching vibrations of the Pc2? ligand will be selectively enhanced, if the excitation frequency coincides with “extra bands”. With excitation at ~19.5 kK the intensity of the symmetrical Os? X stretching vibration at 295 cm?1 (X = Cl), 252 cm?1 (X = Im) and 181 cm?1 (X = Br) is r.r. enhanced, too. The asymmetrical Os? X stretching vibration is observed in the f.i.r. spectrum at 345 cm?1 (X = CN), 274 cm?1 (X = Cl), 261 cm?1 (X = Im) and 200 cm?1 (X = Br).  相似文献   

20.
Ruthenium(II) Phthalocyaninates(2–): Synthesis and Properties of (Acido)(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) (nBu4N)[Ru(OH)2Pc2?] is reduced in acetone with carbonmonoxid to blue-violet [Ru(H2O)(CO)Pc2?], which yields in tetrahydrofurane with excess (nBu4N)X acido(carbonyl)phthalocyaninato(2–)ruthenate(II), [Ru(X)(CO)Pc2?]? (X = Cl, Br, I, NCO, NCS, N3) isolated as red-violet, diamagnetic (nBu4N) complex salt. The UV-Vis spectra are dominated by the typical π-π* transitions of the Pc2? ligand at approximately 15100 (B), 28300 (Q1) und 33500 cm?1 (Q2), only fairly dependent of the axial ligands. v(C? O) is observed at 1927 (X = I), 1930 (Cl, Br), 1936 (N3, NCO) 1948 cm?1 (NCS), v(C? N) at 2208 cm?1 (NCO), 2093 cm?1 (NCS) and v(N? N) at 2030 cm?1 only in the MIR spectrum. v(Ru? C) coincides in the FIR spectrum with a deformation vibration of the Pc ligand, but is detected in the resonance Raman(RR) spectrum at 516 (X = Cl), 512 (Br), 510 (N3), 504 (I), 499 (NCO), 498 cm?1 (NCS). v(Ru? X) is observed in the FIR spectrum at 257 (X = Cl), 191 (Br), 166 (I), 349 (N3), 336 (NCO) and 224 cm?1 (NCS). Only v(Ru? I) is RR-enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号