首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to the well‐known reaction of phosphonic acids RP(O)(OH)2 with divalent transition‐metal ions that yields layered metal phosphonates [RPO3M(H2O)]n, the 2,6‐diisopropylphenyl ester of phosphoric acid, dippH2, reacts with zinc acetate in methanol under ambient conditions to afford tetrameric zinc phosphate [(ArO)PO3Zn(MeOH)]4 ( 1 ). The coordinated methanol in 1 can be readily exchanged by stronger Lewis basic ligands at room temperature. This strategy opens up a new avenue for building double‐four‐ring (D4R) cubane‐based supramolecular assemblies through strong intercubane hydrogen‐bonding interactions. Seventeen pyridinic ligands have been used to synthesize as many D4R cubanes [(ArO)PO3Zn(L)]4 ( 2 – 18 ) from 1 . The ligands have been chosen in such a way that the majority of them contain an additional functional group that could be used for noncovalent synthesis of extended structures. When the ligand does not contain any other hydrogen‐bonding donor–acceptor sites (e.g., 2,4,6‐trimethylpyridine (collidine)), zero‐dimensional D4R cubanes have been obtained. The use of pyridine, lutidine, 2‐aminopyridine, and 2,6‐diaminopyridine, however, results in the formation of linear or zigzag one‐dimensional assemblies of D4R cubanes through strong intermolecular C? H???O or N? H???O interactions. Construction of two‐dimensional assemblies of zinc phosphates has been achieved by employing 2‐hydroxypyridine or 2‐methylimidazole as the exo‐cubane ligand on zinc centers. The introduction of an alcohol side chain on the pyridinic ligand in such a way that the ? CH2OH group cannot participate in intracubane hydrogen bonding (e.g., pyridine‐3‐methanol, pyridine‐4‐methanol, and 3,5‐dimethylpyrazole‐N‐ethanol) leads to the facile noncovalent synthesis of three‐dimensional framework structures. Apart from being useful as building blocks for noncovalent synthesis of zeolite‐like materials, compounds 1 – 18 can also be thermolyzed at approximately 500 °C to yield high‐purity zinc pyrophosphate (Zn2P2O7) ceramic material.  相似文献   

2.
An isolable heterocyclic silylene ( 4 ) with two different π‐donating substituents, namely a classical amino group and a more electropositive and stronger carbon‐based π‐donating phosphonium ylide, was synthesized and fully characterized. The combination of these two different π‐donating substituents confers high thermal stability and an unusual nucleophilic character on silylene 4 . Therefore, silylene 4 behaves as a strong donor ligand toward transition metals with a donating character comparable to N‐heterocyclic carbenes, in contrast to classical N‐heterocyclic silylenes, which generally present a weak donating character.  相似文献   

3.
Radical chain reactions are commonly initiated through the thermal or photochemical activation of purpose‐built initiators, through photochemical activation of substrates, or through well‐designed redox processes. Where radicals come from in the absence of these initiation strategies is much less obvious and are often assumed to derive from unknown impurities. In this situation, molecule‐induced radical formation (MIRF) reactions should be considered as well‐defined alternative initiation modes. In the most general definition of MIRF reactions, two closed‐shell molecules react to give a radical pair or biradical. The exact nature of this transformation depends on the σ‐ or π‐bonds involved in the MIRF process, and this Minireview specifically focuses on reactions that transform two σ‐bonds into two radicals and a closed‐shell product molecule.  相似文献   

4.
Inspired by the cubic Mn4CaO5 cluster of natural oxygen‐evolving complex in Photosystem II, tetrametallic molecular water oxidation catalysts, especially M4O4 cubane‐like clusters (M=transition metals), have aroused great interest in developing highly active and robust catalysts for water oxidation. Among these M4O4 clusters, however, copper‐based molecular catalysts are poorly understood. Now, bio‐inspired Cu4O4 cubanes are presented as effective molecular catalysts for electrocatalytic water oxidation in aqueous solution (pH 12). The exceptional catalytic activity is manifested with a turnover frequency (TOF) of 267 s?1 for [(LGly‐Cu)4] at 1.70 V and 105 s?1 for [(LGlu‐Cu)4] at 1.56 V. Electrochemical and spectroscopic study revealed a successive two‐electron transfer process in the Cu4O4 cubanes to form high‐valent CuIII and CuIIIO. intermediates during the catalysis.  相似文献   

5.
Electrospray ionization mass spectrometry/mass spectrometry in the positive ion mode was used to investigate the gas‐phase chemistry of multicharged ions from solutions of porphyrins with 1,3‐dimethylimidazolium‐2‐yl (DMIM) and 1‐methylimidazol‐2‐yl (MIm) meso‐substituents. The studied compounds include two free bases and 12 complexes with transition metals (Cu(II), Zn(II), Mn(III), and Fe(III)). The observed multicharged ions are either preformed or formed during the electrospraying process by reduction or protonation and comprise closed‐shell and hypervalent mono‐radical and bi‐radical ions. The observed extensive and abundant fragmentation of the DMIM and MIm meso‐substituents is a characteristic feature of these porphyrins. Fragments with the same mass values can be lost from the meso‐substituents either as charged or neutral species and from closed‐shell and hypervalent radical ions. Reduction processes are observed for both the free bases and the metallated DMIM porphyrins and occur predominantly by formation of hypervalent radicals that fragment, at low energy collisions, by loss of methyl radicals with formation of the corresponding MIm functionalities. These findings confirm that, when using electrospray ionization, reduction is an important characteristic of cationic meso‐substituted tetrapyrrolic macrocycles, always occurring when delocalization of the formed hypervalent radicals is possible. For the Fe(III) and Mn(III) complexes, reduction of the metal centers is also observed as the predominant fragmentation of the corresponding reduced ions through losses of charged fragments testifies. The fragmentation of the closed‐shell ions formed by protonation of the MIm porphyrins mirrors the fragmentation of the closed‐shell ions of their DMIM counterparts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The reaction pathway of an enantioselective 5‐endotrig‐type cyclization of 3‐alkenoic acids catalyzed by a chiral palladium–spiro‐bis(isoxazoline) complex, Pd–SPRIX, has been studied by density functional theory calculations. The most plausible pathway involves intramolecular nucleophilic attack of the carboxylate moiety on the C?C double bond activated by Pd–SPRIX and β‐H elimination from the resulting organopalladium intermediate. The enantioselectivity was determined in the cyclization step through the formation of a π‐olefin complex, in which one of the two enantiofaces of the olefin moiety was selected. The β‐H elimination occurs via a seven‐membered cyclic structure in which the acetate ligand plays a key role in lowering the activation barrier of the transition state. In the elimination step, the SPRIX ligand was found to behave as a monodentate ligand due to the hemilability of one of the isoxazoline units thereby facilitating the elimination. Natural population analysis of this pathway showed that the more weakly electron‐donating SPRIX ligand, compared with the bis(oxazoline) ligand, BOX, facilitated the formation of the π‐olefin complex intermediate, leading to a smaller overall activation energy and a higher reactivity of the Pd–SPRIX catalyst.  相似文献   

7.
Members of the cluster set [(Tp)2Mo2Fe6S8L4]z contain the core unit M2Fe6(mu3-S)6(mu4-S)2 in which two MoFe3S4 cubanes are coupled by two Fe-(mu4-S) interactions to form a centrosymmetric edge-bridged double cubane cluster. Some of these clusters are synthetic precursors to [(Tp)2Mo2Fe6S9L2]3-, which possess the same core topology as the P(N) cluster of nitrogenase. In this work, the existence of a three-member electron-transfer series of single cubanes [(Tp)MoFe3S4L3](z) (z = 3-, 2-, 1-) and a four-member series of double cubanes [(Tp)2Mo2Fe6S8L4]z (z = 4-, 3-, 2-, 1-) with L = F-, Cl-, N3, PhS- is demonstrated by electrochemical methods, cluster synthesis, and X-ray structure determinations. The potential of the [4-/3-] couple is extremely low (<-1.5 V vs SCE in acetonitrile) such that the 4- state cannot be maintained in solution under normal anaerobic conditions. The chloride double cubane redox series was examined in detail. The members [(Tp)2Mo2Fe6S8Cl4]4-,3-,2- were isolated and structurally characterized. The redox series includes the reversible steps [4-/3-] and [3-/2-]. Under oxidizing conditions, [(Tp)2Mo2Fe6S8Cl4]2- cleaves with the formation of single cubane [(Tp)MoFe3S4Cl3]1-. The quasireversible [2-/1-] couple is observed at more positive potentials than those of the single cubane redox step. Structure comparison of nine double cubanes suggests that significant dimensional changes pursuant to redox reactions are mainly confined to the Fe2(mu4-S)2 bridge rhomb. The synthesis and structure of [(Tp)2Mo2Fe6S9F2.H2O]3-, a new topological analogue of the P(N) cluster of nitrogenase, is described. (Tp = hydrotris(pyrazolyl)borate(1-)).  相似文献   

8.
The use of a strategy combining ligand design and changes of reaction conditions has been investigated with the goal of directing the assembly of mononuclear, dinuclear, tetranuclear, and polymeric copper(II) complexes. As a result, closely related copper monomers, alkoxo dimers, and hydroxo cubanes, along with a carbonate-bridged polymeric species, have been synthesized using the rigid, aliphatic amino ligands cis-3,5-diamino-trans-hydroxycyclohexane (DAHC), cis-3,5-diamino-trans-methoxycyclohexane (DAMC), and the glutaryl-linked derivative glutaric acid bis-(cis-3,5-diaminocyclohexyl) ester (GADACE). The composition of the monomeric complex has been determined by X-ray crystallography as [Cu(DAHC)2](ClO4)2 (1), the two dimers as [{Cu(DAHC)(OMe)}2](ClO4)2.MeOH (2) and [{Cu(DAMC)(OMe)(ClO4)}2] (3), the three Cu4O4 cubanes as [{Cu(DAHC)(OH)}4](ClO4)(4).2.5MeOH (4), [{Cu(DAMC)(OH)}4](ClO4)4.H2O (5), and [{Cu2(OH)2(GADACE)}2]Cl4.2MeOH.6H2O (6), and an infinite-chain structure as [{Cu(DAHC)(CO3)}n] (7). Furthermore, the cubane structures 4 and 5 have been investigated magnetically. Our studies indicate that formation of the monomeric, dimeric, and tetranuclear DAHC and DAMC complexes can be controlled by small changes in reaction conditions and that further preorganization of the ligand moiety by linking the DAHC cores (GADACE) allows more effective direction of the self-assembly of the Cu4O4 cubane core.  相似文献   

9.
The geometric parameters, electronic structures, and haptotropic migration of a series of hypothetical compounds of general formula CpM(C13H9N) and (CO)3M(C13H9N) (M = fist row transition metal, Cp = C5H5, and C13H9N = phenanthridine ligand) are investigated by means of the density functional theory. The phenanthridine ligand can bind to the metal through η1 to η6 coordination mode, in agreement with the electron count and the nature of the metal, showing its capability to adapt itself to the electronic demand of the metal as well as to the polycyclic aromatic hydrocarbons. In the investigated species, the most favored closed‐shell count is 18‐electron except for the Ti and V models which are deficient open‐shell 16‐electron configuration. This study has shown the difference in coordination ability of this heteropolycyclic ligand: the coordination of the central C5N ring is less favored than the terminal C6 rings, in agreement with the π‐electron density localization. Most of the investigated complexes are expected to exhibit a rich fluxional behavior. This flexibility favors the possibility for the existence of several isomers as well as their interconversion through haptotropic shifts. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Cobalt boryl complexes, which have only been sporadically reported, can be accessed systematically with remarkable (but controllable) variation in the nature of the M? B bond. Complexes incorporating a very strong trans σ‐donor display unparalleled inertness, reflected in retention of the M? B bond even in the presence of extremely strong acid. By contrast, the use of the strong π‐acceptor CO in the trans position, results in significant Co? B elongation and to labilization of the boryl ligand via unprecedented CO migratory insertion. Such chemistry provides a pathway for the generation of coordinative unsaturation, thereby enabling ligand substitution and/or substrate assimilation. Alkene functionalization by boryl transfer, a well‐known reaction for noble metals such as Rh or Pt, can thus be effected by an 18‐electron base‐metal complex.  相似文献   

11.
Reactions of the phosphonio‐benzophospholide π‐complexes 3a, b[Cr] with [M(CO)5(olefin)] or of the σ‐complexes 2a, b[M] (M = Cr, Mo, W) with [M(CO)3(aren)] lead to the first binuclear complexes 4a, b[CrM] featuring phosphonoio‐benzophospholides as μ‐bridging 8e‐donor ligands to two group 6 metal atoms. The constitution of the products was determined by spectroscopic and X‐ray diffraction studies. Mixed complexes with both group 6 and 7 metals were not accessible. Mechanistic studies showed that the reactions follow a complicated mechanism whose single steps may involve transfer of either M(CO)n fragments or single CO ligands between complexes; the latter are associated with a σ/π‐coordination isomerization of the benzophospholide unit. Competition between both reaction channels can lead to the formation of product mixtures whose composition is controlled by the relative thermodynamic stabilities of the products. Computational studies suggest that in the more stable isomer of heterobimetallic complexes 4a, b[MM′] end‐on coordination to the heavier and side‐on coordination to the lighter metal atom is preferred.  相似文献   

12.
In this work, density functional theory and time‐dependent density functional theory were used to investigate the effects of π‐conjugation of the ligand on the photophysical properties, radiative/nonradiative processes and phosphorescence quantum efficiency of tetradentate cyclometalated Pt (II) complex with carbazolyl‐pyridine ligands PtNON . By simulating the absorption spectra and emission wavelengths, increasing the π‐conjugation of the ligand could cause the absorption and emission wavelengths to red‐shift. The results of the computation of key parameters in the radiative decay process, such as singlet‐triplet splitting energy, transition dipole moment and spin‐coupled matrix element between the lowest triplet and singlet excited states, showed that the expansion of π‐conjugation on the carbazole ligand of PtNON resulted in reduction of these parameters, thereby reducing the radiation rate constant. The analyses of the PtNON nonradiative pathway also found that the high activation energy of PtNON made it one of the reasons for the high phosphorescence quantum yield. At the same time, enhancing the molecular orbital delocalization of the ligand further enlarged the energy barrier of the nonradiative pathway, and was conducive to the improvement of phosphorescence quantum yield.  相似文献   

13.
We report classical and tight-binding molecular dynamics simulations of the C(60) fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C(60) fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (approximately < 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (approximately > 10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed.  相似文献   

14.
We report the synthesis and spectroscopic identification of the trisbenzene complexes of strontium and barium M(Bz)3 (M=Sr, Ba) in low‐temperature Ne matrix. Both complexes are characterized by a D3 symmetric structure involving three equivalent η6‐bound benzene ligands and a closed‐shell singlet electronic ground state. The analysis of the electronic structure shows that the complexes exhibit metal–ligand bonds that are typical for transition metal compounds. The chemical bonds can be explained in terms of weak donation from the π MOs of benzene ligands into the vacant (n?1)d AOs of M and strong backdonation from the occupied (n?1)d AO of M into vacant π* MOs of benzene ligands. The metals in these 20‐electron complexes have 18 effective valence electrons, and, thus, fulfill the 18‐electron rule if only the metal–ligand bonding electrons are counted. The results suggest that the heavier alkaline earth atoms exhibit the full bonding scenario of transition metals.  相似文献   

15.
随着化石燃料大量使用带来的气候变化和环境污染问题日趋严重,寻找清洁高效的可再生能源用做传统化石燃料的替代品,已经成为当前的研究热点。光驱动的水分解反应被认为是太阳能制氢的可行途径。水的全分解包括两个半反应-水的氧化和质子还原。其中水的氧化反应是一个涉及四个电子和四个质子转移的复杂过程,需要很高的活化能,被认为是全分解水反应的瓶颈步骤。因此,开发高效、稳定、廉价丰产的水氧化催化剂是人工光合作用突破的关键因素。立方烷具有类似自然界光合作用酶光系统II(PSII)活性中心Mn_4CaO_5簇的结构,世界各国的科学家受自然界光合作用的启发,开发出了许多基于过渡金属的立方烷结构的催化剂,常见的有锰、钴和铜等立方烷催化剂。本文简要地综述了近年来立方烷分子催化剂在光催化水氧化中的研究进展。首先介绍了立方烷基光催化水氧化反应历程,继而详细介绍了基于有机配体的立方烷配合物和全无机的多金属氧酸盐立方烷水氧化催化剂,其次是半导体(BiVO4或聚合的氮化碳(PCN))为捕光材料复合立方烷分子催化剂的水氧化体系最新研究进展。最后总结并展望了该领域所面临的挑战及其前景。  相似文献   

16.
Hrovat DA  Isborn CM  Kahr B  Borden WT 《Organic letters》2008,10(21):4763-4766
B3LYP/6-31G(d) calculations find that cubanes, persubstituted with NO2 or BF2 groups, are predicted to undergo near-barrierless, internal disrotations. However, as a consequence of the intrinsically higher energies of eclipsed conformations for threefold than for twofold rotors, the threshold mechanisms for octamethyl-, octakis(trifluoromethyl)-, octakis(trichloromethyl)-, octakis(tribromomethyl)-, octasilylcubane, and octakis(trichlorosilyl)cubane are calculated to be mono- or conrotation. The cubanes with the larger substituents are predicted to be O-symmetric, resolvable, and thus optically active.  相似文献   

17.
We report the synthesis and spectroscopic identification of the trisbenzene complexes of strontium and barium M(Bz)3 (M=Sr, Ba) in low‐temperature Ne matrix. Both complexes are characterized by a D3 symmetric structure involving three equivalent η6‐bound benzene ligands and a closed‐shell singlet electronic ground state. The analysis of the electronic structure shows that the complexes exhibit metal–ligand bonds that are typical for transition metal compounds. The chemical bonds can be explained in terms of weak donation from the π MOs of benzene ligands into the vacant (n?1)d AOs of M and strong backdonation from the occupied (n?1)d AO of M into vacant π* MOs of benzene ligands. The metals in these 20‐electron complexes have 18 effective valence electrons, and, thus, fulfill the 18‐electron rule if only the metal–ligand bonding electrons are counted. The results suggest that the heavier alkaline earth atoms exhibit the full bonding scenario of transition metals.  相似文献   

18.
Aromatized cationic [(PNN)Re(π acid)(O)2]+ ( 1 ) and dearomatized neutral [(PNN*)Re(π acid)(O)2] ( 2 ) complexes (where π acid=CO ( a ), tBuNC ( b ), or (2,6‐Me2)PhNC ( c )), possessing both π‐donor and π‐acceptor ligands, have been synthesized and fully characterized. Reaction of [(PNN)Re(O)2]+ ( 4 ) with lithiumhexamethyldisilazide (LiHMDS) yield the dearomatized [(PNN*)Re(O)2] ( 3 ). Complexes 1 and 2 are prepared from the reaction of 4 and 3 , respectively, with CO or isocyanides. Single‐crystal X‐ray structures of 1 a and 1 b show the expected trans‐dioxo structure, in which the oxo ligands occupy the axial positions and the π‐acidic ligand occupies the equatorial plane in an overall octahedral geometry about the rhenium(V) center. DFT studies revealed the stability of complexes 1 and 2 arises from a π‐backbonding interaction between the dxy orbital of rhenium, the π orbital of the oxo ligands, and the π* orbital of CO/isocyanide.  相似文献   

19.
By simple ligand exchange of the cationic transition‐metal complexes [(Cp*)M(acetone)3](OTf)2 (Cp*=pentamethylcyclopentadienyl and M=Ir or Rh) with pillar[5]arene, mono‐ and polynuclear pillar[5]arenes, a new class of metalated host molecules, is prepared. Single‐crystal X‐ray analysis shows that the charged transition‐metal cations are directly bound to the outer π‐surface of aromatic rings of pillar[5]arene. One of the triflate anions is deeply embedded within the cavity of the trinuclear pillar[5]arenes, which is different to the host–guest behavior of most pillar[5]arenes. DFT calculation of the electrostatic potential revealed that the metalated pillar[5]arenes featured an electron‐deficient cavity due to the presence of the electron‐withdrawing transition metals, thus allowing encapsulation of electron‐rich guests mainly driven by anion–π interactions.  相似文献   

20.
Syntheses of five types of tungsten-iron-sulfur/selenium clusters, namely, incomplete cubanes, single cubanes, edge-bridged double cubanes (EBDCs), P(N)-type clusters, and double-cuboidal clusters, have been devised using the concept of template-assisted assembly. The template reactant is six-coordinate [(Tp*)W(VI)S(3)](1-) [Tp* = tris(3,5-dimethylpyrazolyl)hydroborate(1-)], which in the assembly systems organizes Fe(2+/3+) and sulfide/selenide into cuboidal [(Tp*)WFe(2)S(3)] or cubane [(Tp*)WFe(3)S(3)Q] (Q = S, Se) units. With appropriate terminal iron ligation, these units are capable of independent existence or may be transformed into higher-nuclearity species. Selenide is used as a surrogate for sulfide in cluster assembly in order to determine by X-ray structures the position occupied by an external chalcogenide nucleophile or an internal chalcogenide atom in the product clusters. Specific incorporation of selenide is demonstrated by the formation of [WFe(3)S(3)Se](2+/3+) cubane cores. Reductive dimerization of the cubane leads to the EBDC core [W(2)Fe(6)S(6)Se(2)](2+) containing μ(4)-Se sites. Reaction of these species with HSe(-) affords the P(N)-type cores [W(2)Fe(6)S(6)Se(3)](1+), in which selenide occupies μ(6)-Se and μ(2)-Se sites. The reaction of [(Tp*)WS(3)](1-), FeCl(2), and Na(2)Se yields the double-cuboidal [W(2)Fe(4)S(6)Se(3)](2+/0) core with μ(2)-Se and μ(4)-Se bridges. It is highly probable that in analogous sulfide-only assembly systems, external and internal sulfide reactants occupy corresponding positions in the cluster products. The results further demonstrate the viability of template-assisted cluster synthesis inasmuch as the reduced (Tp*)WS(3) unit is present in all of the clusters. Structures, zero-field M?ssbauer data, and redox potentials are presented for each cluster type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号