共查询到20条相似文献,搜索用时 0 毫秒
1.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c . 相似文献
2.
3.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X‐ are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3‐ acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present. 相似文献
4.
5.
6.
7.
8.
9.
10.
11.
Alexander Donchev Andreas Schnepf Elke Baum Gregor Stßer Hansgeorg Schnckel 《无机化学与普通化学杂志》2002,628(1):157-161
[Ga6R8]2– (R = SiPh2Me): A Metalloid Cluster Compound with an Unexpected Ga6‐Frame The reaction of a metastable solution of GaBr with a solution of LiSiPh2Me in a toluene/THF mixture results in orange coloured crystals of [Ga6(SiPh2Me)8]2– · 2 [Li(THF)4]+ ( 1 ). The unexpected structure of the planar Ga6 frame (C2h) could also be realized with the help of DFT calculation. DFT calculations furthermore show that 1 is energetically favoured against an octahedral Ga6R62– species and R2. In contrast calculations for the similar Al and B species show that in these cases the octahedral entities are favoured. These results demonstrate that even for similar compounds of B, Al, and Ga Wade rules are too general and that they cannot predict the correct structure. Moreover the atomic arrangement within 1 shows that a structure is preferred which is also present in allotropic β‐Ga and that therefore clusters of this type should be called metalloid or more general elementoid. 相似文献
12.
13.
14.
15.
16.
Carbene Homologues of Germanium, Tin, and Lead with 2‐substituted N ‐Pyrrolyl Ligands A series of germylenes, stannylenes, and plumbylenes could be prepared by reacting the appropriate bis(trimethylsilyl)amino‐substituted carbene homologue E[N(SiMe3)2]2 (E = Ge, Sn, and Pb) with an α‐carbonyl substituted pyrrole derivative under elimination of bis(trimethylsilyl)amine. The isolated compounds have been analysed spectroscopically, and the resulting NMR and IR data were contrasted with parameters obtained from quantumchemical calculations. The good agreement between experimental and theoretical results gives us the opportunity to discuss the vibrations in more detail, particularly those in which the group 14 element is involved. X‐ray crystal structure analyses obtained for five examples show the title compounds essentially to be monomers with primary E–N bonds and, in addition to that, coordinative E ← O contacts. 相似文献
17.
Iodoplumbates with Tetra‐ and Penta‐coordinated Pb2+ Ions In contrast to all known iodoplumbates with octahedrally coordinated Pb2+ ions, square pyramidal geometry is observed in the iodoplumbate chains of (Pr4N)[PbI3] ( 1 ) and [Mg(dmf)6][PbI3]2 ( 2 ), whereas the isolated anions in (Ph4P)2[Pb2I6] ( 3 ) and [Bu3N–(CH2)3–NBu3][PbI4] ( 4 ) contain tetra‐coordinated lead atoms. (Pr4N)[PbI3] ( 1 ): a = 910.86(6), b = 1221.46(7), c = 1907.7(1) pm, V = 2122.5(2) · 106 pm3, space group P212121; [Mg(dmf)6][PbI3]2 ( 2 ): a = 891.24(9), b = 1025.34(7), c = 1234.82(9) pm, α = 92.938(8), β = 106.457(8), γ = 98.100(7)°, V = 1066.4(2) · 106 pm3, space group P1; (Ph4P)2[Pb2I6] ( 3 ): a = 1174.5(1), b = 722.29(7), c = 3104.8(4) pm, β = 100.50(1)°, V = 2589.8(5) · 106 pm3, space group P21/n; [Bu3N–(CH2)3–NBu3][PbI4] ( 4 ): a = 2178.3(1), b = 1008.63(5), c = 1888.3(1) pm, β = 110.003(5)°, V = 3898.6(4) · 106 pm3, space group P2/c. 相似文献
18.
19.
Organometallic Compounds of Copper. XX On the Reaction of the Alkyne Copper(I) Complexes [CuCl(S‐Alkyne)] and [Cu2Br2(S‐Alkyne)(dms)] (S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne; dms = Dimethylsulfide) with the Lithiumorganyls Phenyllithium und Fluorenyllithium The alkyne copper(I) bromide complex [Cu2Br2(S‐Alkyne)(dms)] ( 3 b ) (S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; dms = dimethylsulfide) reacts with phenyllithium to form a tetranuclear copper(I) complex of the composition [Cu4(C6H5)2(S‐Alkenyl)2] ( 7 ) in low yield (4%). The reaction of the alkyne copper(I) chloride complex [CuCl(S‐Alkyne)] ( 2 a ) with fluorenyllithium in tetrahydrofuran (thf) affords a lithium cuprate of the composition [Li(thf)4]+ [Cu2(fluorenyl)3(S‐Alkyne)2]– ( 8 ) (yield 32%). The structures of both new complexes 7 and 8 were determined by X–ray diffraction. 相似文献
20.
Monika Sieger Klaus Hübler Thomas Scheiring Torsten Sixt Stanislav Zalis Wolfgang Kaim 《无机化学与普通化学杂志》2002,628(11):2360-2364
The new complexes (RN=CH‐CH=NR)Co(NO)(CO), R = isopropyl ( 1 ), 2,6‐diisopropylphenyl ( 2 ) and p‐tolyl ( 3 ), were synthesized and spectroscopically characterized. Compounds 1 and 2 could be crystallized for X‐ray structure analysis, CO/NO disorder was observed for 1 . The results indicate a negligible amount of charge transfer from the Co(NO)(CO) moiety to the 1, 4‐diazabutadiene acceptor ligands in the ground state, in agreement with DFT calculations on 1 and as similarly reported for related 1, 4‐diaza‐1, 3‐butadiene complexes of Ni(CO)2 and Fe(NO)2. 相似文献