首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP)‐cured epoxy resin (ER) and poly(?‐caprolactone) (PCL) were prepared via the in situ curing reaction of epoxy monomers in the presence of PCL, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol A (DGEBA), BAPP, and PCL. The miscibility of the blends after and before the curing reaction was established with differential scanning calorimetry and dynamic mechanical analysis. Single and composition‐dependent glass‐transition temperatures (Tg's) were observed in the entire blend composition after and before the crosslinking reaction. The experimental Tg's were in good agreement with the prediction by the Fox and Gordon–Taylor equations. The curing reaction caused a considerable increase in the overall crystallization rate and dramatically influenced the mechanism of nucleation and the growth of the PCL crystals. The equilibrium melting point depression was observed for the blends. An analysis of the kinetic data according to the Hoffman–Lauritzen crystallization kinetic theory showed that with an increasing amorphous content, the surface energy of the extremity surfaces increased dramatically for DGEBA/PCL blends but decreased for ER/PCL blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1085–1098, 2003  相似文献   

2.
Thermosetting blends of a biodegradable poly(ethylene glycol)‐type epoxy resin (PEG‐ER) and poly(?‐caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass‐transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG‐ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG‐ER blends, that is, a PCL‐rich phase and a PEG‐ER crosslinked phase composed of an MAH‐cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase‐separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG‐ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2833–2843, 2004  相似文献   

3.
The hydrogen‐bonding strength of poly(?‐caprolactone) (PCL) blends with three different well‐known hydrogen‐bonding donor polymers [i.e., phenolic, poly(vinyl‐phenol) (PVPh), and phenoxy] was investigated with differential scanning calorimetry and Fourier transform infrared spectroscopy. All blends exhibited a single glass‐transition temperature with differential scanning calorimetry, which is characteristic of a miscible system. The strength of interassociation depended on the hydrogen‐bonding donor group in the order phenolic/PCL > PVPh/PCL > phenoxy/PCL, which corresponds to the q value of the Kwei equation. In addition, the interaction energy density parameter calculated from the melting depression of PCL with the Nishi–Wang equation resulted in a similar trend in terms of the hydrogen‐bonding strength. Quantitative analyses on the fraction of hydrogen‐bonded carbonyl groups in the molten state were made with Fourier transform infrared spectroscopy for all systems, and good correlations between thermal behaviors and infrared results were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1348–1359, 2001  相似文献   

4.
The specific intermolecular hydrogen‐bonding interaction between the ester carbonyl groups of poly(ε‐caprolactone) (PCL) and the phenolic hydroxyl groups of catechin has been studied by Fourier‐transform infrared spectroscopy (FT‐IR) and differential scanning calorimetry (DSC). According to quantitative curve‐fitting analysis of the FT‐IR spectra of PCL/catechin blends, it was found that the fraction of hydrogen‐bonded carbonyl groups of PCL increased with catechin content, while that of hydrogen‐bonded hydroxyl groups of catechin decreased. The calculated crystallinity of PCL in the binary blends, based on the curve‐fitting results, suggested that the crystallization of PCL was restrained in the blends with catechin. Only single glass transition temperature, Tg, was observed over the whole range of blend compositions, which was between those of the pure components. The melting point, Tm, depressed and Tg increased, indicating also the existence of strong intermolecular association. The blend composition dependence of Tg could be predicted very well by the Kwei equation with a positive ‘q’ value of 124. With the aid of small angle X‐ray scattering measurement, the segregation of catechin was investigated. It was found that the extent of extra‐lamellar segregation increased with catechin content. It was suggested that the crystal growth rate played the dominant role in the formation of morphology. With decreasing crystal growth rate of PCL component in the blends, enough time has been given to catechin molecules to diffuse into extra‐lamellar region.

  相似文献   


5.
The thermal behavior of melt‐mixed polypropylene (PP)/poly(?‐caprolactone) (PCL) blends was investigated with differential scanning calorimetry, and it was quantitatively related to the morphology observed through scanning electron microscopy. The PP/PCL blends were immiscible in the whole composition range; however, some interesting phenomena were found. Blends with low PP contents crystallized in a fractionated fashion. By applying a self‐nucleation procedure, we demonstrated that this occurred because of a lack of highly active heterogeneities within the confined PP domains. On the other hand, PP acted as a nucleating agent for PCL, and when the PP content was reduced, the higher surface/volume ratio increased its nucleating activity. The nucleating effect was improved when the PP was self‐nucleated because of the better nucleating effect of PP annealed crystals. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1365–1379, 2007  相似文献   

6.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

7.
The intermolecular hydrogen‐bonding interaction and miscibility between enzymatically prepared novel polyphenols [poly(bisphenol A) and poly(ptert‐butyl phenol)] and poly(ε‐caprolactone) (PCL) were investigated as a function of composition by Fourier transform infrared spectroscopy (FTIR) and DSC. The blend films of PCL and polyphenols were prepared by casting polymer solution. The FTIR spectra clearly indicated that PCL and polyphenols interact through strong intermolecular hydrogen bonds formed between the PCL carbonyls and the polyphenol hydroxyl groups. The melting point and degree of crystallinity of the PCL component decreased with an increased polyphenol content. A single glass‐transition temperature was observed for the blend, and its value increased with the content of polyphenol, indicating that PCL and polyphenols are miscible in the amorphous state. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2898–2905, 2001  相似文献   

8.
Blends of poly(ε‐caprolactone) (PCL) with zein (PCL/zein) in different proportions (100/0, 75/25, 50/50, 25/75 and 0/100 wt% containing 5 wt% glycerol) were compared based on their mechanical properties (tensile strength, elongation at break, and Young's modulus), and on their thermal properties, the latter determined by thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). The morphology of the materials was studied by scanning electron microscopy (SEM). Blends of PCL/zein showed reduced tensile strength and elongation at break, but increased Young's modulus compared to the pure polymers, in agreement with the DMTA and SEM results. These findings indicated that PCL and zein were incompatible. TGA showed that the thermal stability was enhanced by the addition of zein to PCL, whereas SEM showed a poor interfacial interaction between the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

11.
12.
Poly(ε‐caprolactone) (PCL), cellulose acetate (CA) and their blends were characterized by their tensile strength, differential scanning calorimetry (DSC) and optical microscopy (OM). The compatibility of the blends was investigated and the OM results showed that CA tended to disperse as discrete particles in PCL. Thermal analysis showed the characteristic melting temperature peaks for PCL and CA in all blends, indicating that the compounds were immiscible. The addition of CA to PCL increased slightly the crystallinity of PCL, decreased the elongation at yield and the tensile strength up to 40/60 PCL/CA (w/w), which suggested incompatibility between the polymers. Together, these results indicate the absence of a strong chemical interaction between the two polymers. In agreement with this, the addition of CA to blends with PCL increased Young's modulus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Summary: The reaction of triphosgene with poly(ethylene glycol) yielded poly(ethylene glycol) dichloroformate. This difunctional cross‐linker was allowed to react with poly(ε‐caprolactone) bearing carbanionic sites obtained by activation with lithium diisopropylamide. The reaction resulted in the cross‐linking of poly(ε‐caprolactone) chains by poly(ethylene glycol) segments, giving copolymer networks that gel in both organic and aqueous media.

Schematic of the PCL‐g‐PEG copolymers synthesized here.  相似文献   


14.
Biodegradable polymers provide an attractive solution to reduce environmental pollution caused by the accumulation of plastic waste in landfills. In this study, the effect of polyethylene‐graft‐glycidyl methacrylate (PE‐g‐GMA) on the biodegradation of blends of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA) (80/20, 60/40, 40/60, and 20/80 PCL/CA, w/w) was assessed by mass retention, tensile strength, and morphological properties. The principal fungal strains present in the soil after biodegradation were also identified. PCL and the blends containing 60% and 80% PCL showed greater mass loss and superficial change in simulated soil. PE‐g‐GMA increased the tensile strength retention during 3 months of aging in simulated soil. Scanning electron microscopy (SEM) indicated that pure PCL was more porous, which enhanced the hydrolysis and biodegradation of PCL. PE‐g‐GMA decreased the mass loss of the polymers, possibly by enhancing the interaction between PCL and CA, with the formation of hydrogen bonds between the carbonyl groups of PCL and the hydroxyl groups of CA. This effect was marked in blends with >40% PCL. Microbiological analysis revealed the presence of several species of fungi in the soil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

16.
17.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

19.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

20.
Porous poly(ε‐caprolactone) structures have been prepared by leaching of compression moulded salt‐containing polymer precipitates. Coagulation takes place when a PCL solution containing dispersed water‐soluble salt particles is precipitated into an excess of non‐solvent. Porous scaffolds are obtained after leaching of the compression moulded polymer‐salt precipitate. This process yields scaffolds with a very homogeneous pore morphology and independent control of pore size and porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号