首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synthesis and Crystal Structure of the Holmium(III) Chloride Oxotellurate(IV) HoClTeO3 Orange coloured, rod—shaped single crystals of the holmium( III) chloride oxotellurate(IV) HoClTeO3 (orthorhombic, Pnma; a = 730.25(5), b = 696.54(5), c = 905.18(7) pm; Z = 4) are obtained during attempts to synthesize holmium(III) oxochlorotellurates(IV) by reaction of holmium oxychloride (HoOCl) and tellurium dioxide (TeO2; 1:1—2molar ratio, 800 °C, 40 d) in evacuated silica tubes. The crystal structure contains sevenfold coordinated Ho 3+ cations surrounded by five oxide and two chloride anions forming a pentagonal bipyramid. Interconnection of the [Ho(O1)(O2)4Cl2] polyhedra occurs via two edges made of four equatorial oxygen atoms (O2) under formation of {[Ho(O1)(O2)4/2Cl2/1]5‐} chains running parallel [010]. These arrange as hexagonal closest packing of rods and are linked to each other by Cl anions to a three—dimensional {[Ho(O1)1/1(O2)4/2Cl2/2]4‐} network. All Te4+ cations are embedded therein and exhibit ψ1—tetrahedral coordination figures as discrete anionic [Te(O1)(O2)2]2‐ pyramids due to the stereochemical activity of the non—binding electron pairs („lone pairs”︁). They stabilize the {[HoO3Cl]4‐} network via covalent bonds to one axial (O1) and two equatorial oxygen atoms (O2) of each [HoO5Cl2] polyhedron.  相似文献   

2.
Ho2Te4O11 and Ho2Te5O13: Two Telluriumdioxide‐rich Oxotellurates(IV) of Trivalent Holmium Ho2Te4O11 (monoclinic, C2/c; a = 1240.73(8), b = 511.21(3), c = 1605.84(9) pm, β = 106.142(7)°; Z = 4) and Ho2Te5O13 (triclinic, P1; a = 695.67(5), b = 862.64(6), c = 1057.52(7) pm, α = 89.057(6), β = 86.825(6), γ = 75.056(6)°; Z = 2) are obtained by the reaction of holmium sesquioxide with tellurium dioxide in appropriate molar ratios (Ho2O3 : TeO2 = 1 : 4 and 1 : 5, respectively) in evacuated silica tubes within eight days at 800 °C. The application of cesium chloride (CsCl) as flux in about five times molar excess secures fast and complete reactions to the single‐crystalline products aimed at. In the crystal structure of Ho2Te4O11 [HoO8] polyhedra are connected via oxygen edges thereby building up a network {[Ho2O10]14–} (001). On the other hand, the crystal structure of Ho2Te5O13 exhibits oxygen‐linked [(Ho1)O8] and [(Ho2)O7] polyhedra, which form ribbons {[(Ho1)2(Ho2)2O20]28–} running along [100]. Common to both structures, however, is the stereochemical activity of the non‐bonding electron pairs (“lone pairs”) of all the of the Te4+ cations (Te1 and Te2 in Ho2Te4O11, Te1–Te5 in Ho2Te5O13) causing ψ1‐polyhedral figures of coordination with 3 + 1, 4 and 3 + 2 oxygen atoms, respectively, around the central atoms.  相似文献   

3.
Ho2O[SiO4] and Ho2S[SiO4]: Two Chalcogenide Derivatives of Holmium(III) ortho‐Oxosilicate Ho2O[SiO4] crystallizes monoclinically with the space group P21/c (a = 904.15(9), b = 688.93(7), c = 667.62(7) pm, β = 106.384(8)°, Z = 4) in the A‐type structure of rare‐earth(III) oxide oxosilicates. Yellow platelet‐shaped single crystals were obtained as by‐product during an experiment to synthesize Ho3Cl[SiO4]2 by reacting Ho2O3 and SiO2 in the ratio 4 : 6 with an excess of HoCl3 as flux at 1000 °C for seven days in evacuated silica ampoules. Both crystallographically different Ho3+ cations show coordination numbers of 8+1 and 7 with coordination figures of 2+1‐fold capped trigonal prisms and octahedra, in which one of the vertices changes to an edge by two instead of one coordinating atoms, respectively. The O2— anion not linked to silicon is surrounded tetrahedrally by four Ho3+ cations which built a layer parallel (100) by vertex‐ and edge‐sharing of the [OHo4]10+ units according to {[(O5)(Ho1)1/1(Ho2)3/3]4+}. Within rhombic meshes of these layers the isolated oxosilicate tetrahedra [SiO4]4— come to lie. Ho2S[SiO4] crystallizes orthorhombically in the space group Pbcm (a = 605.87(5), b = 690.41(6), c = 1064.95(9) pm, Z = 4). It also emerged as a single‐crystalline by‐product obtained during the synthesis of Ho2OS2 by reaction of a mixture of Ho2O3, Ho and S with the wall of the evacuated silica tube used as container with an excess of CsCl as flux at 800 °C. The structure of the yellow platelet‐shaped, air and water resistant crystals also distinguishes two Ho3+ cations with bicapped trigonal prisms and trigondodecahedra as coordination polyhedra for CN = 8. The S2— anions are almost square planar surrounded by four Ho3+ cations, but situated completely outside this plane. The [SHo4]10+ squares form strongly corrugated layers perpendicular to [100] by corner‐sharing according to {[(S)(Ho1)2/2(Ho2)2/2]4+}. Contrary to the oxide oxosilicates the isolated oxosilicate tetrahedra [SiO4]4— do not lie within the rhombic meshes of these layers, but above and below the (Ho2)3+ cations while viewing along [100].  相似文献   

4.
On Oxytellurides (M2O2Te) of the Early Lanthanides (M = La–Nd, Sm–Ho) with A- or anti -ThCr2Si2-Type Crystal Structure By reacting elementary lanthanide metal (M = La–Nd, Sm–Ho) with tellurium dioxide (TeO2) in a 2 : 1 molar ratio, it is possible to obtain pure and single-phase oxytellurides of the composition M2O2Te at 750 °C in evacuated silica tubes within a few days. When larger quantities of cesium chloride (CsCl) are added as flux, plate-like single crystals with square cross-section are formed which are not sensitive to hydrolysis and very suitable for crystal structure refinements from X-ray data. In the anti-ThCr2Si2 analogous crystal structure (tetragonal, I4/mmm, Z = 2; La2O2Te: a = 412.31(4), c = 1309.6(1) pm; Ce2O2Te: a = 408.17(4), c = 1294.7(1) pm; Pr2O2Te: a = 405.62(4), c = 1285.8(1) pm; Nd2O2Te: a = 403.08(4), c = 1277.1(1) pm; Sm2O2Te: a = 399.83(4), c = 1265.5(1) pm; Eu2O2Te: a = 397.56(4), c = 1257.9(1) pm; Gd2O2Te: a = 396.20(4), c = 1253.2(1) pm; Tb2O2Te: a = 393.89(4), c = 1245.4(1) pm; Dy2O2Te: a = 392.34(4), c = 1240.3(1) pm; Ho2O2Te: a = 390.57(6), c = 1239.0(3) pm) the M3+ cations are surrounded by nine anions (4 O2– und 4 + 1 Te2–) in the shape of a capped square antiprism. The anions show coordination numbers of four (O2–: tetrahedra) and eight plus two (Te2–: bicapped cubes) with respect to the cations. PbO-analogous square {[OM4/4]2}2+ triple layer slabs are present parallel (001), which originate through two-dimensional infinite linking of [OM4]10+ tetrahedra via two trans-orientated pairs of edges (i. e. four edges altogether). These cationic layers are piled alternatingly along [001] with likewise quadratic single layers of Te2– anions, which take care of the three-dimensional coherence as well as of the charge balance.  相似文献   

5.
6.
The title ionic compound, (C7H8N3)2[Ho2(C4H5O2)8], is constructed from two almost identical independent centrosymmetric anionic dimers balanced by two independent 2‐amino‐1H‐benzimidazol‐3‐ium (Habim+) cations. The asymmetric part of each dimer is made up of one HoIII cation and four crotonate (crot or but‐2‐enoate) anions, two of them acting in a simple η2‐chelating mode and the remaining two acting in two different μ22 fashions, viz. purely bridging and bridging–chelating. Symmetry‐related HoIII cations are linked by two Ho—O—Ho and two Ho—O—C—O—Ho bridges which lead to rather short intracationic Ho...Ho distances [3.8418 (3) and 3.8246 (3) Å]. In addition to the obvious Coulombic interactions linking the cations and anions, the isolated [Ho2(crot)8]2− and Habim+ ions are linked by a number of N—H...O hydrogen bonds, in which all N—H groups of the cation are involved as donors and all (simple chelating) crot O atoms are involved as acceptors. These interactions result in compact two‐dimensional structures parallel to (110), which are linked to each other by weaker π–π contacts between Habim+ benzene groups.  相似文献   

7.
By reaction of elemental tellurium, tellurium(IV) chloride, tantalum(V) chloride and tantalum(V) oxychloride in the ionic liquid [BMIM]Cl ([BMIM]Cl:1‐Butyl‐3‐methylimidazolium chloride),[Te8]2[Ta4O4Cl16] is obtained in the form of lucent black crystals. The title compound consists of infinite [Te–Te–(Te6)]n2+ chains (Te–Te: 264.9(1)–284.3(1) pm) and isolated [Ta4O4Cl16]4– anions. The [Te–Te–(Te6)]n2+ chains are interconnected to form a two‐dimensional tellurium network (Te–Te: 335.9 pm). Due to this interaction the [Te–Te–(Te6)]n2+ chains in [Te8]2[Ta4O4Cl16] show an arrangement that differs significantly from known polycationic [Te8]n2+ chains. The two‐dimensional tellurium network is finally separated by tetrameric, corner‐sharing oxidochloridotantalate anions [(TaO2/2Cl4/1)4]4– that are firstly observed. The composition of [Te8]2[Ta4O4Cl16] is confirmed by EDX analysis; its optical band gap is estimated to 1.1–1.2 eV via UV/Vis spectroscopy.  相似文献   

8.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

9.
Thiosilicates of the Rare‐Earth Elements: II. The Noncentrosymmetric Cesium Derivatives CsM[SiS4](M = Sm — Tm) The cesium lanthanoid thiosilicates CsM[SiS4] (M = Sm — Tm) all crystallize orthorhombically in the noncentrosymmetric space group P212121 with four formula units per unit cell. The lattice constants show values within the following ranges: a = 630 — 640 pm, b = 665 — 673 pm and c = 1763 — 1778 pm. The reaction of lanthanoid metal (M) with sulfur (S) and silicon disulfide (SiS2) with an excess of cesium chloride (CsCl) serving both as flux medium and as reactand (Cs+ source) in evacuated silica ampoules for seven days at 850 °C leads to air‐ and water‐resistant platelet‐shaped single crystals that exhibit the colour of the lanthanoid trication (M3+) with a slight yellowish shade. The crystal structure arranges in layers since anionic {M[SiS4]} sheets get alternatingly piled with those of Cs+ cations. The M3+ cations are surrounded capped trigonal prismatically by seven sulfide anions whereas the Cs+ cations have an environment of nine plus two S2— in the shape of a fivefold overcapped trigonal prism. All sulfide anions belong to almost ideal tetrahedral ortho‐thiosilicate units [SiS4]4—.  相似文献   

10.
Structural Chemistry and Magnetic Properties of Ho3+‐β″‐Al2O3(Ho0, 5Mg0, 5Al10, 5O17) The crystal structure of Ho3+‐β″‐Al2O3(Ho0, 5Mg0, 5Al10, 5O17) was determined by single crystal X‐ray diffraction methods at room temperature (trigonal, R3¯m, Z = 3, a = 561.43(12) pm, c = 3353.7(11) pm). The structural chemical results are correlated with magnetic measurements, where ligand field calculations applying the angular overlap model have been taken into account.  相似文献   

11.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

12.
Single Crystals of A—type CuPrS2 and C—type Pr2S3 from Attempts to Synthesize Ternary Copper(I) Praseodymium(III) Sulfides Coarse, yellowish‐green single crystals of the ternary copper(I) praseodymium(III) sulfide CuPrS2 form within seven days at 800°C by oxidation of elemental copper and praseodymium with sulfur (molar ratio: 1:1:2) in evacuated silica tubes when equimolar quantitites of CsCl are present as flux. Attempts to synthesize CuPr3S5 or CuPr5S8 under analogous conditions always yield two‐component mixtures of CuPrS2 and Pr2S3 (C type) instead of the desired target compounds. The crystal structure of CuPrS2 (monoclinic, P21/c; a = 655.72(6), b = 722.49(6), c = 686.81(6)pm, β = 98.686(7)°; Z = 4) exhibits undulated layers {[Cu(S1)3/3(S2)1/1]3—} parallel (100) which consist of vertex‐linked pairs of two [CuS4]7— tetrahedra ([Cu2S6]10—) sharing a common edge. Their three‐dimensional cross‐linkage is achieved by Pr3+ cations in monocapped trigonal prismatic coordination of seven S2— anions each. The metal sulfur distances in the [CuS4] units cover with 233 (Cu—S2) and 236 (Cu—S1) as well as 247 (Cu—S1′) and 248pm (Cu—S1″) a rather broad interval, whereas those (Pr—S: 284—304 pm) within the [PrS7] polyhedra lie relatively closer together. According to Pr2.6770.333S4 (with Z = 4), C—Pr2S3 crystallizes in a cation‐deficient Th3P4‐type structure (cubic, I4¯3d; a = 857.68(7) pm; Z = 5.333 for Pr2S3). In conformity with the Niggli formula {PrS8/5.333} Pr3+ is surrounded trigon‐dodecahedrally by eight S2— at distances of 287 (4×) and 307pm (4×). Neither the X‐ray single‐crystal structure refinement nor electron‐beam microprobe analyses leave any evidence for the incorporation of Cu+ cations into this crystal structure.  相似文献   

13.
Quaternary Cesium Copper(I) Lanthanoid(III) Selenides of the Type CsCu3M2Se5 (M = Sm, Gd — Lu) By oxidation of mixtures of copper and lanthanoid metal with elemental selenium in molar ratios of 1 : 1 : 2 and in addition of CsCl quaternary cesium copper(I) lanthanoid(III) selenides with the formula CsCu3M2Se5 (M = Sm, Gd — Lu) were obtained at 750 °C within a week from torch‐sealed evacuated silica tubes. An excess of CsCl as flux helps to crystallize golden yellow or red, needle‐shaped, water‐resistant single crystals. The crystal structure of CsCu3M2Se5 (M = Sm, Gd — Lu) (orthorhombic, Cmcm, Z = 4; e. g. CsCu3Sm2Se5: a = 417.84(3), b = 1470.91(8), c = 1764.78(9) pm and CsCu3Lu2Se5: a = 407.63(3), b = 1464.86(8), c = 1707.21(9) pm, respectively) contains [MSe6]9— octahedra which share edges to form double chains running along [100]. Those are further connected by vertices to generate a two‐dimensional layer parallel to (010). By edge‐ and vertex‐linking of [CuSe4]7— tetrahedra two crystallographically different Cu+ cations build up two‐dimensional puckered layers parallel to (010) as well. These sheet‐like structure interconnects the equation/tex2gif-stack-3.gif{[M2Se5]4—} layers to create a three‐dimensional network according to equation/tex2gif-stack-4.gif{[Cu3M2Se5]}. Thus empty channels along [100] form, apt to take up the Cs+ cations. These are surrounded by eight plus one Se2— anions in the shape of (2+1)‐fold capped trigonal prisms with Cs—Se distances between 348 and 368 pm (8×) and 437 (for M = Sm) or 440 pm (for M = Lu), respectively, for the ninth ligand.  相似文献   

14.
Colorless platelets of Na2Lu3I3[TeO3]4 were obtained within five days at 775 °C by the reaction of Lu2O3 and TeO2 in a 3:8 molar ratio with NaI added in excess as both fluxing agent and reactant in evacuated silica ampoules. It crystallizes in the monoclinic space group P2/c with the lattice parameters a = 921.69(5), b = 552.71(3), c = 1664.37(9) pm, β = 90.218(4)° and Z = 2. The crystal structure of Na2Lu3I3[TeO3]4 exhibits two crystallographically different Lu3+ cations, both coordinated by eight O2– anions as square antiprisms. These polyhedra are interconnected through four common edges to build up {}^2_∞ {[LuO{}^e_8/2 ]5–} layers (e = edge‐linking) parallel to (100). Furthermore, the crystal structure includes a crystallographically unique Na+ cation surrounded by four O2– and four I anions also in the shape of a square antiprism. These polyhedra connect via common (I2)···(I2) edges in generating {}^1_∞ {[Na2O8I{}^e_4 ]18–} double‐strands that are further linked by (I1) vertices to result in the formation of {}^2_∞ {[Na2O8I3{}^e,v_3 ]17–} layers (v = vertex‐linking) spreading out parallel to (100) as well. Thus, the crystal structure contains two crystallographically distinct I anions, of which (I1) is coordinated nearly linear (? (Na–I1–Na) = 179.6°) by two Na+ cations, whereas (I2) has contact to three of them displaying a distance of 114 pm from the triangular (Na+)3 plane. The crystal structure of Na2Lu3I3[TeO3]4 is completed by two crystallographically independent Te4+ cations that show stereochemically active non‐bonding electron pairs (“lone pairs”) and are located above and below the {}^2_∞ {[LuO{}^e_8/2 ]5–} layers forming isolated ψ1‐tetrahedral [TeO3]2– anions (d(Te–O) = 188–190 pm) with all oxygen atoms.  相似文献   

15.
The complexes [Cu(AMTTO)Cl2] ( 2 ), [Cu(AMTTO)2]Cl ( 3 ), and [Cu(AMTTO)(PPh3)2Cl] ( 4 ) have been prepared and characterized by IR spectroscopy and elemental analyses. Also single‐crystal X‐ray diffraction studies on compound 2 , 3 and 4 revealed that AMTTO acts in 2 as a bidentate ligand via nitrogen and sulfur atoms, in 3 and 4 as a monodentate via sulfur atoms. Complex 3 was already mentioned in literature, but the structure was not described in detail. The molecules in 2 form infinite chains through additional weak Cu—S interactions along [010] indicating the Jahn‐Teller distortion of the d9 ion Cu2+. The infinite chains are connected by hydrogen bonding along [100]. Crystal data for 2 at —80°C: monoclinic, space group P21/m, a = 666.7(1), b = 609.4(1), c = 1132.6(2) pm, b = 95.46(2)°, Z = 2, R1 = 0.0365; for 3 at —80°C: orthorhombic, space group Pbcn, a = 1291.2(2), b = 1146.5(1), c = 1000.5(1) pm, Z = 4, R1 = 0.0315; for 4 at —80°C: monoclinic, space group, P21/n, a = 879.4(1), b = 1849.3(2), c = 2293.8(3) pm, β = 92.38(1)°, Z = 4, R1 = 0.0688.  相似文献   

16.
An innovative soft chemical approach was applied, using ionic liquids as an alternative reaction medium for the synthesis of tellurium polycationic cluster compounds at room temperature. [Mo2Te12]I6, Te6[WOCl4]2, and Te4[AlCl4]2 were isolated from the ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) and characterized. Black, cube‐shaped crystals of [Mo2Te12]I6, which is not accessible by conventional chemical transport reaction, were obtained by reaction of the elements at room temperature in [BMIM]Cl/AlCl3. The monoclinic structure (P21/n, a = 1138.92(2) pm, b = 1628.13(2) pm, c = 1611.05(2) pm, β = 105.88(1) °) is homeotypic to the triclinic bromide [Mo2Te12]Br6. In the binulear complex [Mo2Te12]6+, the molybdenum(III) atoms are η4‐coordinated by terminal Te42+ rings and two bridging η2‐Te22– dumbbells. Despite the short Mo···Mo distance of 297.16(5) pm, coupling of the magnetic moments is not observed. The paramagnetic moment of 3.53 μB per molybdenum(III) atom corresponds to an electron count of seventeen. Black crystals of monoclinic Te6[WOCl4]2 are obtained by the oxidation of tellurium with WOCl4 in [BMIM]Cl/AlCl3. Tellurium and tellurium(IV) synproportionate in the ionic liquid at room temperature yielding violet crystals of orthorhombic Te4[AlCl4]2.  相似文献   

17.
Phosphanimine and Phosphoraneiminato Complexes of Beryllium. Crystal Structures of [BeCl2(HNPPh3)2], [BeCl(HNPPh3)2(Py)]Cl, and [Be3Cl2(NPPh3)4] Tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], reacts with lithium phosphoraneiminate, [LiNPPh3]6, in dichloromethane to give the three‐nuclear beryllium phosphoraneiminate [Be3Cl2(NPPh3)4] ( 3 ). As a by‐product the phosphaneimine complex [BeCl2(HNPPh3)2] ( 1 ) can be isolated, which reacts with pyridine to give the ionic complex [BeCl(HNPPh3)2(Py)]Cl ( 2 ). On the other hand, the silylated phosphanimine Me3SiNP(p‐tolyl)3 ( 5 ) does not react with BeCl2 or (Ph4P)2[Be2Cl6] forming the expected phosphoraneiminates. From CH2Cl2 solutions only the amino‐phosphonium salt [(C7H7)3PNH2]Cl ( 4 ) can be obtained. The compounds 1 ‐ 5 are characterized by single X‐ray analyses and by IR spectroscopy. 1 ·C7H8: Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1408.9(2), b = 1750.9(2), c = 1633.2(2) pm, β = 106.50(1)°; R1 = 0.0385. 1 forms a molecular structure with short Be—N distances of 169.8(3) pm. 2 ·Py: Space group P1¯, Z = 4, lattice dimensions at 193 K: a = 969.5(1), b = 2077.1(2), c = 2266.4(2) pm, α = 72.24(1)°, β = 87.16(1)°, γ = 77.42(2)°, R1 = 0.0776. 2 forms ion pairs in which the NH atoms of the phosphaneimine ligands act as hydrogen bridges with the chloride ion. The HNPPh3 ligand realizes short Be—N bonds of 169.0(6) pm, the Be—N distance of the pyridine molecule is 182.5(6) pm. 3 ·3CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1333.2(2), b = 1370.2(2), c = 2151.8(3) pm, α = 107.14(1)°, β = 91.39(1)°, γ = 105.15(1)°, R1 = 0.0917. The structure of the three‐nuclear molecule 3 corresponds with a Be2+ ion which is tetrahedrally coordinated by the nitrogen atoms of two {ClBe(NPPh3)2} chelates. 4 ·CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1206.6(2), b = 1798.0(2), c = 1096.2(1) pm, β = 97.65(1)°, R1 = 0.0535. 4 forms dimeric units in which the NH2 groups of the [(C7H7)3PNH2]+ cations act as hydrogen bridges with the chloride ions to give centrosymmetric eight‐membered rings. 5 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1074.3(2), b = 2132.2(3), c = 1075.5(2) pm, β = 110.68(1)°, R1 = 0.0664. 5 forms molecules with distances PN of 154.6(3), SiN of 168.8(3) pm, and bond angle SiNP of 134.4(2)°.  相似文献   

18.
Air‐sensitive black crystals of the new compound [Mn(en)3]Te4 were synthesized by reacting MnCl2 · 4 H2O, K2Te3 and elemental Te in 1,2‐ethanediamine (en) under solvothermal conditions at 433 K. The compound crystallizes in the monoclinic space group P21/n with lattice parameters a = 839.51(7) pm, b = 1551.3(1) pm, c = 1432.6(1) pm, and β = 90.28(2)°. Isolated [Mn(en)3]2+ cations and Te42– anions are arranged in an alternating fashion parallel to the crystallographic b‐axis. One terminal Te atom of the Te42– anions exhibits a short intermolecular contact to a neighboured anion thus forming Te84– anions. A slightly longer interionic Te…Te separation is observed between two of the inner Te atoms of neighboured Te84– anions. Taking these longer separations into account infinite Te‐chains are formed running parallel to [001]. The intermolecular Te…Te interactions affect the Te–Te bond lengths within the Te42– anion leading to a lengthening of the average Te–Te distance. Short N–H…Te distances indicate hydrogen bonding between the cations and anions. DTA‐TG measurements show that at 441 K the material decomposes in one step. The resulting crystalline material consists of MnTe2 and Te.  相似文献   

19.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

20.
The structures of the title compounds, [Ho(C5H7O2)3(H2O)2]·H2O and [Ho(C5H7O2)3(H2O)2]·C5H8O2·2H2O, both show an eight‐coordinate holmium(III) ion in a square antiprismatic configuration. The packing of these structures consists of an infinite two‐dimensional network of hydrogen‐bonded mol­ecules. In both structures, the same hydrogen‐bonded chain of HoIII complexes is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号