首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ba2Cu2AlF11 is trigonal: a = 7.301(1) Å, c = 14.145(2) Å, γ = 120°, Z = 3. The crystal structure was solved in the space group P32 (n° 145), from X-ray single crystal data using 2675 unique reflections (2476 with F/σ(F) > 4). It consists in a complex tridimensional arrangement of copper-fluorine and aluminium-fluorine octahedra, with an original kind of linkage which involves simultaneously edges and vertices.  相似文献   

2.
Ba2CuAlF9 is monoclinic: a = 5.374(2) Å, b = 7.312(2) Å, c = 9.371(3) Å, β = 90.20(1)°, Z = 2, space group P21/c (n° 14). The crystal structure was solved from X-ray single crystal data using 1071 unique reflections (900 with Fo/σ(Fo) > 4, R factor = 0.075). It is built up from infinite isolated cis chains of [MF6] mixed occupied fluorine octahedra sharing each, one edge and one vertex (M is randomly Cu or Al). An analogous kind of linkage was already observed for two other compounds from the ternary system BaF2/CuF2/AlF3. Close structural relationships exist between the cationic subnetworks of γ-BaAlF5 and Ba2CuAlF9.  相似文献   

3.
The ternary system BaF2/CuF2/AlF3 is investigated by X‐ray diffraction techniques and an isothermal section at 620 °C is established. It exhibits ten quaternary phases and among them Ba45Cu28Al17F197. This fluoride has a triclinic cell: a = 14.024(1) Å, b = 23.778(1) Å, c = 25.480(1) Å, α = 90.44(1)°, β = 90.26(1)°, γ = 107.03(1)°, Z = 2. Its crystal structure was solved in the space group P1 (no1), from X‐ray single crystal data using 41976 unique reflections. It is built up from a complex arrangement of aluminium and copper fluorine polyhedra, which are regular [AlF6] and strongly distorted [CuF6] octahedra, [CuF6] trigonal prisms and [Cu2F10] bipolyhedral units constituted either by two octahedra, or one octahedron and one trigonal prism, connected by an edge. These polyhedra are organized in planes of about two octahedra thickness, which form a succession of sheets running perpendicularly to the [100] direction of the cell. Each sheet is constituted by infinite chains of distorted polyhedra connected by edges and vertices and linked together by the vertices of blocks of four and six polyhedra, involving aluminium fluorine octahedra and copper fluorine bipolyhedral units or octahedra. The barium ions, 10 to 14‐coordinated to fluorine atoms, ensure the electroneutrality of the structure. They are inserted inside the planes.  相似文献   

4.
Incorporation of Al3+ in Ir3O12 Octahedra-Triple in Ba4Ir2AlO10 Single crystals of Ba4Ir2AlO10 were prepared by solid state/flux reactions. It crystallizes with orthorhombic symmetry: space group D–Cmca; a = 5.778; b = 13.352; c = 13.084 Å; Z = 4. The structure is characterized by face connection of three IrO6- or Ir/AlO6-octahedra. X-ray investigations show an ordered occupation of the centric octahedron by Ir and a statistically distribution of Ir and Al in the adjacent octahedra. Calculations of the coulomb term of the lattice energy support a charge distribution in the manner Ir5+/Al3+? Ir4+? Ir5+/Al3+.  相似文献   

5.
Single crystals of Sr5Al2F16 crystallize in colourless translucent plates and have been prepared by solid state synthesis, starting from stoichiometric mixtures of the binary fluorides. The crystal structure has been determined and refined from single crystal diffractometer data (orthorhombic, space group Ccca (no. 68), a = 7.4488(4) Å, b = 12.4714(7) Å, c = 14.1411(8) Å, V = 1313.67(13) Å3, Z = 4, R[F 2 > 2σ(F 2)] = 0.025; wR2(F 2 all) = 0.056, 971 structure factors, 56 parameters) and can be derived from a slightly distorted c.c.p. arrangement where 7/8 of the c.c.p. positions are occupied by the metal atoms. The main features of the structure are AlF6 octahedra and SrF8 polyhedra with mean distances d(Al–F) = 1.791 Å and d(Sr–F) = 2.531 Å, respectively.  相似文献   

6.
The storage and reduction of nitrogen oxides has attracted much attention as an efficient way to reduce NOx emission of lean-burn gasoline and diesel engines1-5. At present, NOx storage and reduction (NSR) catalysts based on Pt and Ba have been extensivel…  相似文献   

7.
The crystal structure of Ba58Ga22F180O is established by means of X‐ray single crystal diffraction. It is tetragonal: a = 22.033(1) Å, c = 17.626(1) Å, Z = 2. The structure is solved in the space group I4/mmm (n° 139), using 3219 independent reflections. It is mainly built from a deficient arrangement of fluorite‐type [FBa4] tetrahedra connected by edges and vertices which constitutes the skeleton of the structure, giving rise to large cavities in which lie isolated fluorine ions in tetrahedral and octahedral barium environment, isolated [F2Ba6] bitetrahedra, isolated barium ions in eight‐coordination of fluorine and a complex arrangement of isolated [GaF6] octahedra and isolated [Ga2F10O] bioctahedra.  相似文献   

8.
The crystal structure of the ζ2‐phase Al3Cu4‐δ was determined by means of X‐ray powder diffraction: a = 409.72(1) pm, b = 703.13(2) pm, c = 997.93(3) pm, space group Imm2, Pearson symbol oI24‐3.5, RI = 0.0696. ζ2‐Al3Cu4‐δ forms a distinctive a × √3a × 2c superstructure of a metal deficient Ni2In‐type‐related structure. The phase is meta‐stable at ambient temperature. Between 400 °C and 450 °C it decomposes into ζ1‐Al3Cu4 and η2‐AlCu. Entropic contributions to the stability of ζ2‐Al3Cu4‐δ are reflected in three statistically or partially occupied sites.  相似文献   

9.
Single crystals of a new barium oxogallate were obtained by growth from a melt at 1500 °C. The compound is monoclinic, with cell parameters a = 17.7447(10) Å, b = 10.6719(5) Å, c = 7.2828(5) Å, β = 98.962(7)°, V = 1362.3(2) Å3. The diffraction pattern shows systematic absences corresponding to the space group P121/c1. The structure was solved by direct methods followed by Fourier syntheses, and refined using a single crystal diffraction data set (R1 = 0.032 for 2173 reflections with I > 2σ(I)). The chemical composition derived from structure solution is Ba4Ga2O7, with a unit cell content of Z = 6. Main building units of the structure are GaO4 tetrahedra sharing one oxygen atom to form Ga2O7 groups. The Ga–O–Ga bridging angle of one of the two symmetrically independent groups is linear by symmetry. The dimers are crosslinked by barium cations coordinated by six to eight oxygen ligands.  相似文献   

10.
11.
Summary A compound Ba6Nd2Al4O15 with a new structure-type was prepared by solid state reaction. It crystallizes with hexagonal symmetry, space group C 6v 4 – P 63mc;a=11.5696;c=6.9662 Å;z=2. Ba6Nd2Al4O15 has a dominating Ba/O-framework with incorporated AlO6-octahedra and AlO4-tetrahedra. A main feature of the structure are face connected BaO6-octahedra. One of the point positions of the heavy atoms is occupied statistically by Ba2+ and Nd3+.
  相似文献   

12.
Ba3N2 reacts at 950°C under pure N2 with Zr to yield dark red, air-sensitive Ba[ZrN2]. This new compound crystallizes in the tetragonal space group P4/nmm with a = 416.10(2), c = 839.2(1) pm and Z = 2. The crystal structure was solved and refined using X-ray and neutron powder diffraction data. In the nitrido zirconate [ZrN2]2? the Zr atoms exhibit a square-pyramidal coordination by five N atoms at distances of 201(3) and 220.2(2) pm. The pyramids share all the edges in the basal plane to form layers parallel to (001) with their apices alternately pointing up and down. The Ba2+ cations are integrated into these layers at the levels of the pyramidal apices. The structure can be interpreted as a stuffed PbFCl type. Ba2[NbN3] is formed by the reaction of Ba3N2 and NbN or of Ba and Nb at 1 000°C under N2. Isostructural to Ba2[TaN3] it crystallizes in the monoclinic space group C2/c with a = 613.2(3), b = 1 176.8(3), c = 1 322.9(4) pm, β = 91.65(2)°, Z = 8. The nitrido niobate anions form chains of corner sharing NbN4 tetrahedra with distances Nb? N between 188(1) and 199.9(9) pm.  相似文献   

13.
使用复杂晶体化学键理论计算了La0.5R0.5Ba2Cu3O7(R=Pr,Nd,Sm,Eu,Gd,Dy,Y,Ho,Er,Tm,Yb,Lu)(La-R123),Pr0.5R0.5Ba2Cu3O7(R=La,Nd,Sm,Eu,Gd,Dy,Ho,Y,Er,Tm,Yb,Lu)(Pr-R123)以及RBa2Cu3O7(R=La,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Y,Er,Tm)(R123)中Cu-O键的键共价性,结果表明Pr-R123,La-R123,以及R123都应具有超导性,而实验结果是La0.5Pr0.5Ba2Cu07,R0.5,Pr0.5Ba2Cu3O7(R=La,Nd,Sm,Eu,Gd)无超导性,产生这种矛盾的原因尚不明确,需要做进一步的研究。  相似文献   

14.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

15.
Cadmium in Square Pyramids of Oxygen in the Barium Cadmium Oxovanadate: Ba2Cd3(VO4)2(V2O7) Single crystals of Ba2Cd3(VO4)2(V2O7) have been prepared by crystallization of a melt of BaCO3, CdO and V2O5. It shows orthorhombic symmetry, space group D? P212121, a = 7.206(2), b = 9.978(1), c = 19.617(3) Å, Z = 4. The crystal structure is characterized by (VO4)3? and (V2O7)4? groups, CdO6 octahedra, BaO12 and BaO9 polyhedra and with respect to Cd containing oxides unusual square pyramids of O2? around Cd2+. The observed [CdO4] zickzack chains are connected by VO4 tetrahedra, V2O7 double tetrahedra and CdO5 pyramids, forming a tunnel structure along [100]. The tunnels are filled by barium.  相似文献   

16.
Pb3Fe2F12 grown by hydrothermal synthesis, crystallizes in the triclinic system, space group P1 , with a = 7.403(2) Å, b = 7.621(2) Å, c = 9.890(3) Å, α = 110.45(2)°, β = 107.98(1)°, γ = 95.92(2)°, V = 483.12(4) Å3, Z = 2. The structure was solved from single crystal data using 3 913 independent reflections (R = 0.045 and Rw = 0.045). Characteristical of this structure is the presence of isolated tetrameric groups [Fe4F20]8? in form of “rings” as previously observed in Ba3Al2F12. “Independent” fluorine ions are also located and their cationic coordination is discussed. In contrast to Ba3Fe2F12, all the rings are parallel in the structure.  相似文献   

17.
Tl2Ba2Ca2Cu3O10 was reported to be a superconductor with a highest transition temperature of 125 K among the homologous series of Tl2Ba2Can-1CunO2n+4. The direct information on the Cu ion site at the atomic level is important for elucidating the superconductivity mechanism. The local bond properties of Tl2Ba2Ca2Cu3O10 were studied using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.561, and the average covalency of Cu(2)-O is 0.296. M(o)ssbauer isomer shifts of 57Fe in Tl2Ba2Ca2Cu3O10 were calculated using the chemical surrounding factor, defined by covalency and electronic polarizability. It is verified that for lower doping, Fe substitute the Cu at the Cu (1) site in forms of Fe3+ and Fe4+; for higher doping, Fe3+ and Fe4+ ion occupies Cu(1) and Cu(2) site respectively.The studies show that the determination of the correspondence between spectrum components and actual copper sites occupied by M(o)ssbauer nucleus was made easier with the aid of the calculation results of the chemical bond parameters.  相似文献   

18.

Reaction of [NH4]2[MoS4], CuCl and PyPPh2 in the solid state produces a cube-like cluster. The cluster crystallizes in the orthorhombic space group P212121 with four formula units in a cell of dimensions a = 12.8980(10) , b = 17.6820(10), c = 22.665(2) Å. Anisotropic refinement for all nonhydrogen atoms yielded the values R = 0.0397 and R w = 0.1185 for 8803 observed reflections. The structure is built up from three [Cu(Ph2PPy)]+ units bridged by MoS2? 4 to form a tetranuclear symmetrical cube-like molecule. Investigation of the third-order optical nonlinear value showed that it exhibits a considerable nonlinear absorptive and self-defocusing effect with α2 = 1.3 × 10?11 m w?1 and n 2 = ? 3.2 × 10?18 m2 w?1 in a 1.5 × 10?4 M DMF solution.  相似文献   

19.
The synthesis of bulk Y2Ba4Cu7O15-δ superconductor at atmospheric oxygen pressure via solid state sintering is reported. Temperature ranging from 860 to 890 °C as well as time interval over 2 to 15 days were used to investigate the formation of the Y2Ba4Cu7O15-δ phase. A time-temperature profile characterizing the conditions for the preparation of Y2Ba4Cu7O15-δ phase suggests the optimal condition to be sintering at 890 °C for over 10 days. Detailed results of X-ray diffraction, electrical resistivity, iodometric titration and magnetization measurements are described.  相似文献   

20.
The reaction of a mixture of barium and rhenium (3:1) at 850 °C under flowing nitrogen yielded the nitride‐oxide (Ba6O)(ReN3)2 (R (No. 148); a = 8.1178(2) Å, c = 17.5651(4) Å; V = 1002.43(5) Å3; Z = 6). According to a structure refinement on X‐ray powder diffraction data, this compound is isostructural to a recently described nitride‐oxide of osmium of analogous composition. The structure consists of sheets of trigonal ReN3 units and trigonal antiprismatic Ba6O groups. The Ba–O distance of 2.73 Å is close to the sum of the respective ionic radii. The trigonal ReN35– nitride anion displays a Re–N bond length of 1.94 Å, and is planar within the limits of experimental error. The constitution of the anion was confirmed by IR and Raman spectroscopy. The nitride‐oxide is stable up to 1000 °C, semiconducting (σ = 4.57 × 10–3 Ω–1 · cm–1 at RT), and paramagnetic down to 25 K. A Curie–Weiss analysis resulted in a magnetic moment of μ = 0.68 μB per rhenium atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号