首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colorless and highly air‐ and moisture‐sensitive powders of M[o‐C6H4O(OH)] with M = K, Rb, or Cs have been synthesized from reaction mixtures of the appropriate alkali metal and catechol in thf. All compounds were structurally characterized by means of powder X‐ray diffraction using the Rietveld profile refinement technique including restraints for the C—C/C—O bond distances and the C—C—C angles. The atomic arrangements of M[o‐C6H4O(OH)] (K: monoclinic P21/c; Rb/Cs: orthorhombic Pbcm) are characterized by polymeric chains of [M1[4]O2[2]η6] units connected by hydrogen bonds, thereby making up layered structures similar to the one of catechol. The coordinatively unsaturated alkali metals are forming edge‐sharing MO4 pyramids and exhibit asymmetrical η6‐interactions with the phenylene rings. The symmetry of the unit cells increases with increasing size of the cation, and this results in a decrease of the monoclinic angle from 118.5° (catechol) to 93.7° (K compound), eventually leading to orthorhombic cells for the Rb and Cs compounds.  相似文献   

2.
M[m‐C6H4O(OH)] (M = Li—Cs) have been obtained as highly air‐ and moisture‐sensitive powders from reaction mixtures of the appropriate alkali metals and resorcinol in thf. Both the potassium and rubidium compounds were structurally characterized by means of powder X‐ray diffraction using the Simulated Annealing method and the Rietveld profile refinement technique including C—C/C—O bond distance and C—C—C angle restraints. K[m‐C6H4O(OH)] (orthorhombic P212121) forms infinite alternating chains of meta‐hydroxyphenolate anions connected by K—O bonds and short charge‐assisted hydrogen bonds, thereby generating a three‐dimensional network of corrugated layers similar to the structure of pure resorcinol. The potassium cations are surrounded by a triangle of oxygen and, moreover, coordinated by six adjacent phenylene rings to form a distorted octahedron. The complex crystal structure of Rb[m‐C6H4O(OH)] (monoclinic Pa) is characterized by layers of hydrogen‐bonded meta‐hydroxyphenolate triple units separated by corrugated rubidium layers. The three crystallographically different Rb atoms are coordinated by three, four, and five oxygens with irregular polyhedra, and the rubidiums are also involved in further electrostatic interactions by up to eight phenylene rings.  相似文献   

3.
Pentazole Derivates and Azides Formed from them: Potassium‐Crown‐Ether Salts of [O3S—p‐C6H4—N5] and [O3S—p‐C6H4—N3] O3S—p‐C6H4—N2+ was reacted with sodium azide at —50 °C in methanol, yielding a mixture of 4‐pentazolylbenzenesulfonate and 4‐azidobenzenesulfonate (amount‐of‐substance ratio 27:73 according to NMR). By addition of KOH in methanol at —50 °C a mixture of the potassium salts K[O3S—p‐C6H4—N5] and K[O3S—p‐C6H4—N3] was precipitated (ratio 60:40). A solution of this mixture along with 18‐crown‐6 in tetrahydrofurane yielded the crystalline pentazole derivate [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF by addition of petrol ether at —70 °C. From the same solution upon evaporation and redissolution in THF/petrol ether the crystalline azide [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF was obtained. A solution of the latter in chloroform/toluene under air yielded [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O. According to their X‐ray crystal structure determinations [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N5]·THF and [THF‐K‐18‐crown‐6][O3S—p‐C6H4—N3]·THF have the same kind of crystal packing. Differences worth mentioning exist only for the atomic positions of the pentazole ring as compared to the azido group and for one THF molecule which is coordinated to the potassium ion; different orientations of the THF molecule take account for the different space requirements of the N5 and the N3 group. In [K‐18‐crown‐6][O3S—p‐C6H4—N3]·1/3H2O there exists one unit consisting of one [K‐18‐crown‐6]+ and one [O3S‐C6H4—N3] ion and another unit consisting of two [O3S‐C6H4—N3] ions joined via two [K‐18‐crown‐6]+ ions and one water molecule. The rate constants for the decomposition [O3S‐C6H4—N5] → [O3S‐C6H4—N3] + N2 in methanol were determined at 0 °C and —20 °C.  相似文献   

4.
4‐Nitrobenzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes but the known structures of the alkali metal salts of PNBA do not include the rubidium salt. The structures of the isomorphous potassium and rubidium polymeric coordination complexes with PNBA, namely poly[μ2‐aqua‐aqua‐μ3‐(4‐nitrobenzoato)‐potassium], [K(C7H4N2O2)(H2O)2]n, (I), and poly[μ3‐aqua‐aqua‐μ5‐(4‐nitrobenzoato)‐rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II), have been determined. In (I), the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O‐atom donors, a single bridging carboxylate O‐atom donor and two water molecules, one of which is bridging. In Rb complex (II), the same basic MO6 coordination is found in the repeat unit, but it is expanded to RbO9 through a slight increase in the accepted Rb—O bond‐length range and includes an additional Rb—Ocarboxylate bond, completing a bidentate O,O′‐chelate interaction, and additional bridging Rb—Onitro and Rb—Owater bonds. The comparative K—O and Rb—O bond‐length ranges are 2.7352 (14)–3.0051 (14) and 2.884 (2)–3.182 (2) Å, respectively. The structure of (II) is also isomorphous, as well as isostructural, with the known structure of the nine‐coordinate caesium 4‐nitrobenzoate analogue, (III), in which the Cs—O bond‐length range is 3.047 (4)–3.338 (4) Å. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups, as well as extensions along c through the para‐related carboxylate group, giving a two‐dimensional structure in (I). In (II) and (III), three‐dimensional structures are generated through additional bridges involving the nitro and water O atoms. In all three structures, the two water molecules are involved in similar intra‐polymer O—H...O hydrogen‐bonding interactions to both carboxylate and water O‐atom acceptors. A comparison of the varied coordination behaviour of the full set of Li–Cs salts with 4‐nitrobenzoic acid is also made.  相似文献   

5.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

6.
The reactions of K[(2,6‐iPr2C6H3‐O)2POO] either with LaCl3(H2O)7 or with Nd(NO3)3(H2O)6 in a 3:1 molar ratio, followed by vacuum drying and recrystallization from alkanes, have led to the formation of diaquapentakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dilanthanum hexane disolvate, [La2(C24H34O4P)5(OH)(H2O)2]·2C6H14, ( 1 )·2(hexane), and tetraaquatetrakis[bis(2,6‐diisopropylphenyl) phosphato]‐μ‐hydroxido‐dineodymium bis(2,6‐diisopropylphenyl) phosphate heptane disolvate, [Nd2(C24H34O4P)4(OH)(H2O)4]·2C6H14, ( 2 )·2(heptane). The compounds crystalize in the P21/n and P space groups, respectively. The diaryl‐substituted organophosphate ligand exhibits three different coordination modes, viz. κ2O,O′‐terminal [in ( 1 ) and ( 2 )], κO‐terminal [in ( 1 )] and μ2‐κ1O1O′‐bridging [in ( 1 ) and ( 2 )]. Binuclear structures ( 1 ) and ( 2 ) are similar and have the same unique Ln2(μ‐OH)(μ‐OPO)2 core. The structure of ( 2 ) consists of an [Nd2{(2,6‐iPr2C6H3‐O)2POO}4(OH)(H2O)4]+ cation and a [(2,6‐iPr2C6H3‐O)2POO] anion, which are bound via four intermolecular O—H…O hydrogen bonds. The molecular structure of ( 1 ) displays two O—H…O hydrogen bonds between OH/H2O ligands and a κ1O‐terminal organophosphate ligand, which resembles, to some extent, the `free' [(2,6‐iPr2C6H3‐O)2POO] anion in ( 2 ). NMR studies have shown that the formation of ( 1 ) undoubtedly occurs due to intramolecular hydrolysis during vacuum drying of the aqueous La tris(phosphate) complex. Catalytic experiments have demonstrated that the presence of the coordinated hydroxide anion and water molecules in precatalyst ( 2 ) substantially lowered the catalytic activity of the system prepared from ( 2 ) in butadiene and isoprene polymerization compared to the catalytic system based on the neodymium tris[bis(2,6‐diisopropylphenyl) phosphate] complex, which contains neither OH nor H2O ligands.  相似文献   

7.
The crystal structure of the title compound, catena-poly[bis[aqua(18-crown-6)­potassium] di­aqua(18-crown-6)­potassium [[tetra-μ-benzoato-2:3κ8O:O′-μ-cyano-1:2κ2C:N-tetra­cyano-1κC-irondirhodium(RhRh)]-μ-cyano-1κC:3′κN] octahydrate], [K(18-crown-6)(H2O)]2[K(18-crown-6)(H2O)2]­[FeRh2(C7H5O2)4(CN)6]·8H2O, where (18-crown-6) is 1,4,7,10,13,16-hexaoxa­cyclo­octa­decane (C12H24O6), has been determined. Ferric cyanides connect the dirhodium units to form a one-dimensional chain compound. [K(18-crown-6-ether)(H2O)2] cations (with inversion symmetry) and [K(18-crown-6-ether)(H2O)] cations (in general positions) are located between the chains.  相似文献   

8.
Rubidium dihydrogentricyanomelaminate semihydrate Rb[H2C6N9] · 1/2 H2O was obtained as colorless rod‐like single crystals from a solution of Rb3[C6N9] · H2O and 0.1 M HCl after water evaporation at room temperature. According to the X‐ray single‐crystal structure determination (Rb[H2C6N9] · 1/2 H2O: C2/c (no. 15), a = 2007.4(3) pm, b = 512.2(1) pm, c = 2168.0(4) pm, β = 111.66(2)°, Z = 8, R1 = 0.059, 2391 independent reflections, 159 parameters) Rb+ and cyclic planar [H2C6N9] ions as well as hydrate water molecules occur in the crystal. Rb[H2C6N9] · 1/2 H2O was investigated by FTIR and Raman spectroscopy, TG measurements and temperature‐dependent X‐ray powder diffraction. According to the thermoanalytic investigations, dehydration of Rb[H2C6N9] · 1/2 H2O starts above 60 °C and is finished below 250 °C.  相似文献   

9.
Single crystals of racemic anhydrous alkali and ammonium hydrogen tartrates of the composition M(C4H5O6) with M = K, Rb, Cs, NH4 as well as MxM′1?x(C4H5O6) with {M = K, M′ = Rb, x = 0.5}, {M = K, M′ = NH4, x = 0.56} and {M = Rb, M′ = NH4, x = 0.61} were obtained from the reaction of D,L‐tartaric acid with the corresponding hydroxides MOH and / or M′OH. These compounds form an isostructural series (monoclinic, P21/c, Z = 4). The structures consist of alternating tartrate anion layers and cation layers. Each tartrate layer is held together by a number of hydrogen bonds and contains exclusively either the D or the L‐form of the tartrate. Structural analogies between these crystals and their chiral counterparts are investigated. The smilarity of cell parameters between racemic and chiral structures is shown to be a consequence of certain packing features that occur in both groups.  相似文献   

10.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   

11.
The two isomorphous title compounds, [1,5,9‐tris(2‐aminoethoxy)‐3,7,11‐trihydroxy‐3,7,11‐tribora‐1,5,9‐triborata‐2,4,6,8,10,12‐hexaoxa‐13‐oxoniatricyclo[7.3.1.05,13]tridecane]cobalt(II), [Co(C6H21B6N3O13)] or Co{B6O7(OH)3[O(CH2)2NH2]3}, and the NiII analogue, [Ni(C6H21B6N3O13)], each consist of an MII cation and an inorganic–organic hybrid {B6O7(OH)3[O(CH2)2NH2]3}2− anion. The MII cation lies on a crystallographic threefold axis (as does one O atom) and is octahedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Molecules are connected to one another through N—H...O and O—H...O hydrogen bonds, forming a three‐dimensional supramolecular network.  相似文献   

12.
Pb2(OH)2[p‐O2C‐C6H4‐CO2]: Synthesis and Crystal Structure Single crystals of Pb2(OH)2[p‐O2C‐C6H4‐CO2] ( 1 ) were obtained by hydrothermal reaction of terephthalic acid and PbCO3 at 180 °C (10 days). 1 crystallizes in the monoclinic space group P21/c with Z = 2 (a = 1115.6(2) pm, b = 380.10(4) pm, c = 1141.3(2) pm, β = 93.39(1)°, V = 0.4831(1) nm3). The crystal structure is characterized by ladder‐type Pb(OH)3/3 double chains, which are connected to a three‐dimensional framework by terephthalate dianions.  相似文献   

13.
The title compound [systematic name: 9,10‐di­methoxy‐2,3‐methyl­ene­dioxy‐5,6‐di­hydro­dibenzo­[a,g]­quinolizinium form­ate–succinic acid (1/1)], C20H18NO4+·CHO2·C4H6O4, con­tains centrosymmetric pairs of almost planar berberine cations, and hydrogen‐bonded (C4H6O4⋯HCOO)2 rings of succinic acid with formate anions, bonded by O—H⋯O hydrogen bonds with O⋯O distances of 2.4886 (15) and 2.5652 (16) Å. Pairs of cations and mol­ecules of succinic acid are connected by non‐conventional weak C—H⋯O hydrogen bonds, with C⋯O distances of 3.082 (2) and 3.178 (2) Å.  相似文献   

14.
The title compounds, bis­(ammonium) naphthalene‐1,5‐di­sul­fon­ate, 2NH4+·C10H6O6S22−, and bis­[1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane] 1,5‐naphthalene­di­sul­fon­ate, 2C7H15N4O+·C10H6O6S22−, were prepared from the acid‐promoted reaction of hexa­methyl­enetetr­amine. In both structures, the di­sulfonate anion is positioned on an inversion center, with each sulfonate group contributing to the supramolecular assemblies via hydrogen bonds. The ammonium cations are linked to sulfonate groups by four distinct N+—H⃛O—S contacts [N⃛O = 2.846 (2)–2.898 (2) Å and N—H⃛O = 160 (2)–175 (2)°], whereas the 1‐(hydroxy­methyl)‐3,5,7‐tri­aza‐1‐azoniatri­cyclo­[3.3.1.13,7]­decane cations form one O—H⃛O—S [O⃛O = 2.628 (2) Å and O—H⃛O = 176°] and three C—H⃛O—S [C⃛O = 3.359 (2)–3.380 (2) Å and C—H⃛O = 148–155°] interactions to neighboring sulfonate groups.  相似文献   

15.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

16.
The title compound, [Ca(C16H12O4)(H2O)6]·H2O, adopts a conformation about the central C—C bond that places the two carboxylate groups in an anti orientation. The crystal consists of layers of two‐dimensional arrays of 2,3‐di­phenyl­succinate dianions which are linked by bridging Ca2+ cations. The unit cell contains two Ca2+ cations in an unusual four‐membered Ca—O—Ca—O ring in which the bridging O atoms belong to water mol­ecules rather than carboxyl­ates, i.e. poly­[[[di‐μ‐aqua‐bis­[penta­aqua­calcium(II)]]‐μ‐(meso‐2,3‐di­phenyl­succinato‐O:O′)] succinate dihydrate].  相似文献   

17.
In the title complex, 1,4‐diazo­niabi­cyclo­[2.2.2]­octane bis­(hy­drogen maleate), C6H14N22+·2C4H3O4?, the C4H3O4? and C6H14N22+ ions, derived from maleic acid and 1,4‐di­aza­bi­cyclo­[2.2.2]­octane, respectively, are disordered across a mirror plane in space group Cmc21, and they are linked by two nearly linear N—H?O hydrogen bonds, with N?O distances of 2.662 (3) and 2.614 (4) Å, and N—H?O angles of 173°. The crystal structure consists of sheets with reticulations of 3.3792 (4) Å in stratum and 7.3892 (8) Å in width. The sheets are linked by C—H?O hydrogen bonds.  相似文献   

18.
A donor–acceptor compound, di­aqua‐1κO,2κO‐[μ‐11,23‐dimethyl‐3,7,15,19‐tetra­aza­tri­cyclo­[19.3.1.19,13]hexacosa‐1(25),2,7,9,11,13(26),14,19,21,23‐decaene‐25,­26‐diolato‐1κ4N3,N7,O25,O26:­2κ4N15,N19,O25,O26]­dizinc(II) diperchlorate bis(8‐methyl­quinoline) ethanol disolvate, [Zn2(C24H26N4O2)(H2O)2](ClO4)2·2C10H9N·2C2H6O, obtained by the reaction of a dinuclear zinc(II) complex of a Robson macrocycle (acceptor) and 8‐methyl­quinoline (donor), lies about an inversion centre and the coordination about the unique Zn atom is a distorted square pyramid. The fifth coordination site is occupied by the water mol­ecule, Zn—O = 2.016 (2) Å, and the average macrocyclic Zn—O and Zn—N distances are 2.059 (6) and 2.059 (3) Å, respectively.  相似文献   

19.
Solid state photolysis of alkali tris(malonato)ferrates(III), i.e., M3[Fe(CH2C2O4)3]xH2O (M=Li, Na, K, NH4) has been studied employing Mössbauer, infrared and reflectance spectroscopic techniques. The complexes were irradiated for 300 hours using a medium pressure mercury vapour lamp of 250 W, Photodecomposition led to the formation of an iron(II) intermediate, M2[FeII(CH2C2O4)2(H2O)2] (M=Li, Na, K) which on prolonged standing in air oxidized to M[FeIII(CH2C2O4)2(H2O)2]. However, in case of ammonium complex, FeIICH2C2O4·2H2O once formed remained stable. The extent of photoreduction showed the sequence: NH4, K>Li>Na. The results have been compared with those of alkali tris (oxalato) ferrates(III).  相似文献   

20.
The crystal structure determinations of picolinamidium squarate, C6H7N2O+·C4O4, (I), and di‐p‐toluidinium squarate dihydrate, 2C7H10N+·C4O42−·2H2O, (II), are reported. While salt formation occurs by donation of one H atom from squaric acid to the picolin­amide mol­ecule in (I), in compound (II), each squaric acid mol­ecule donates one H atom to the p‐toluidine N atom of two trans p‐toluidine molecules. In (I), the pyridine ring is coplanar with the squarate monoanion through imposed crystallographic mirror symmetry; in (II), the dihedral angle between the p‐toluidine moiety and the squarate dianion is 70.71 (1)°. In (I), a three‐dimensional structure is formed via van der Waals interactions between parallel planes of mol­ecules, with hydrogen‐bond interactions (N—H⋯O and O—H⋯O) acting within the planes; hydrogen bonds form a three‐dimensional network in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号