首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chromate conversion coatings (CCCs) on AA7075‐T6 were characterized using scanning electron microscopy, focused ion beam sectioning and scanning transmission electron microscopy with nano‐electron dispersive spectroscopy line profiling. The thickness and composition of the CCC was different at different locations on the heterogeneous microstructure of AA7075‐T6. The coating formed on the matrix phase was much thicker than that formed on the coarse Al–Cu–Mg, Al–Fe–Cu and Mg–Si intermetallic particles. Nano‐electron dispersive spectroscopy line profiling indicated that the coating on the Al–Fe–Cu particles was similar to the CCC formed on the phase matrix, primarily a chromium oxide. However, the coatings on the Al–Cu–Mg and Mg–Si particles were mixed Al/Mg/Cr oxide and Mg oxide, respectively. The growth of CCC followed a linear‐logarithmic kinetic rate law. The observations of this study support the sol‐gel model of CCC formation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigated the dependence of the anticorrosion performance of a poly(γ‐glycidoxypropyltrimethoxysilane) (poly(γ‐GPTMS)) sol‐gel coating on AA2024‐T3 aluminum alloy surface state. Two different AA2024‐T3 surface pretreatment procedures were tested: a degreasing with acetone and a chemical multistep etching process (industrial chemical etching pretreatment). Poly(γ‐GPTMS) coatings were deposited onto both pretreated surfaces using the dip‐coating technique. Surfaces were characterized principally by scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared attenuated total reflectance, contact angles, and roughness measurements. Moreover, for the coated AA2024‐T3 surfaces, a pull‐off test was used to evaluate the poly(γ‐GPTMS) adhesion to the pretreated surface. Bare surface properties depended on the applied pretreatment. The chemically etched surface was the roughest and the most concentrated in hydroxyl groups. In addition, comparatively to the degreased surface, it has a more hydrophobic character. Poly(γ‐GPTMS) coating revealed an uneven nature and a poor adhesion once it was deposited onto the degreased surface. Coatings anticorrosion performances were evaluated using electrochemical impedance spectroscopy measurements (EIS). Electrochemical impedance spectroscopy data proved that the sol‐gel coating applied onto the chemically etched surface had better anticorrosion performance.  相似文献   

4.
Elemental depth profiling by glow discharge optical emission spectroscopy has been used to characterize the corrosion products on AA2024‐T3. In previous work, the aluminium, oxygen and copper depth profiles were shown to provide information regarding surface roughening, the thickness of corroded layers and extent of copper de‐alloying/relocation. Nitrogen, sulfur, phosphorus and chromium depth profiles were examined in the hope of detecting inhibitor species within the corroded/altered layers after 5 h of exposure to a corrosive solution. In the present work, the study is extended to longer exposure time. The work presents a further study of the leaching of benzotriazole from the coating matrix or from nanocontainers during various times of exposure to a corrosive environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Recent interest in environmentally friendly alternatives to chromate‐based corrosion inhibitors has led to the development of a range of novel coating formulations. The work described herein is aimed at developing a novel methodology to contribute to investigation of the self‐healing and active corrosion protection of the new coatings. An experimental procedure has been developed to model a defect in the coating by fixing coated specimens in close proximity to the uncoated AA2024‐T3, each separated by a narrow gap containing sodium chloride solution. After exposure to the corrosive environment, elemental depth profiles of the uncoated specimens were acquired by glow discharge optical emission spectroscopy (GDOES). The depth profiles of selected elements (notably aluminium, oxygen and copper) were shown to have characteristics which can be correlated with bulk surface roughening/intensity of corrosion, the thickness of the corroded layer and de‐alloying/re‐distribution of copper. An unanticipated inhibitory effect was noted in the case of a coating doped with γ‐Al2O3 (γ‐alumina or AluOx). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Sheet AA2024‐T3 is probably one of the most studied aluminium alloys in the corrosion field, because, with copper as an alloying addition, it is one of the most corrosion‐prone aluminium alloys. This paper reports new findings on the composition and distribution of intermetallic (IM) particles in AA2024‐T3 through the examination of over 80 000 compositional domains in nearly 18 000 IM particles. This work was achieved by using an electron microprobe to map out 2 × 2 mm2 at a step size of 400 nm. This study revealed that the composition of individual particles can vary considerably from ‘accepted’ compositions. Domains within particles were extensive across the surface. Because such a large area was mapped, it was possible to subdivide this area and to look at the variation of particle statistics from region to region, providing some information on the statistical variation for small electrodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Rare earth (lanthanides) cations have demonstrated exceptional activity as cathodic corrosion inhibitors for aluminium alloys (AAs). While Ce is generally regarded as the most active, there have been reports of synergistic interactions between mixtures of rare earths, which show increased inhibitive activity. In this study a combinatorial experimental approach was used to evaluate the corrosion inhibition of four rare earth chlorides (Ce, La, Pr, Nd) singly and as mixtures. The estimation of corrosion currents using both potentiodynamic scans and electrochemical impedance spectroscopy (EIS) provided the quantification of corrosion inhibition. The results were then modelled to determine the best predicted inhibition activity. A partial least squares (PLS) regression indicated that the optimal response directly correlated with the amount of Ce present. From the regression analysis, Ce alone demonstrated the best inhibition activity, with the optimum mixture predicted to contain 100% Ce. The addition of La, Pr or Nd, was not observed to improve the inhibition activity. This study represents one of the first applications of combinatorial design to a fundamental question of corrosion inhibition. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In recent years, many hybrid inorganic‐organic systems have been proposed in order to replace the traditional conversion coatings on metals like aluminum, and some results have been promising. However, many proposed solutions are based on complicated processes which are not easy to be adapted to industrial scale. The aim of this study was to establish a simple process leading to the production of highly efficient corrosion protective hybrid sol‐gel coating systems for the aluminum alloys as replacement for the highly hazardous conventional chromate conversion coatings. Hybrid coatings have been realized by means of the sol‐gel process. CeO2 and ZnO have been introduced as dispersions of nanoparticles in the system and used as corrosion inhibitors. The aim of this work was to obtain pore‐free coatings with increased barrier properties using nanoparticles that possess the double function of pore fillers and corrosion inhibitors. The proposed processes led to coating materials with good adherence to the aluminum substrate and an extremely long life in the accelerated neutral salt spray test according to DIN ISO 9227. Electrochemical impedance spectroscopy approves these results by high impedance values in the low‐frequency region of the Bode plot. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The self‐assembling behavior of 1‐tetradecylphosphonic acid (TDPA) molecules on the surfaces of 2024 aluminum alloys was studied with an emphasis on the different micro‐structural regions of the alloy surface, specially the alloy matrix and the two main types of intermetallic particles, as well as how the adsorption was effected by changes in water content of the self‐assembly solution. Surface characterization was undertaken with contact angle measurement, scanning electron microscopy and Auger electron spectroscopy (AES). The packing density of TDPA film on the alloy surface increased with the increasing water content of the self‐assembly solution. It seemed that the micro‐distribution of TDPA molecules was related to copper amount and the region with a higher surface copper concentration had a lower packing density of TDPA. Some pits were formed in the acidic self‐assembly solutions and the exposed surfaces of the pits can quickly adsorb TDPA molecules with compactness comparative to the matrix surface. Different adsorption models of TDPA corresponding to different water content of the self‐assembly solution were suggested based on the analysis of AES depth sputtering data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The chromate conversion coating formed on commercial tinplate via a cathode electrolytic dichromate treatment has been studied by X‐ray photoelectron spectroscopy (XPS) and electrochemistry methods. Through the analysis of the XPS, it was shown that there existed Cr, O, and Sn in the chromate coating and the chromate film consisted mainly of Cr(OH)3, Cr2O3, Sn, and SnOx. The current density decreased with increasing of the electric charge. The corrosion resistance for tinplate is relative with the content of chromium in the passivation film. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, the effectiveness of 2‐mercaptobenzothiazole (2‐MBT), 8‐hydroxyquinoline and benzotriazole as corrosion inhibitors for AA 2024‐T3 aluminium alloy was evaluated. The corrosion behaviour in the presence of each compound was investigated by image‐assisted electrochemical noise analysis, electrochemical impedance spectroscopy, potentiodynamic polarization and the split cell technique. It was found that 2‐MBT has superior inhibition properties compared with the other inhibitors. In particular, the specimens immersed in 3.5% NaCl in the presence of 2‐MBT displayed high values of noise resistance that were maintained for over 400 h of testing, and high values of low‐frequency impedance, measured after immersion for 24 h. The split cell technique and potentiodynamic polarization tests indicated that only 2‐MBT decreases significantly both the anodic and the cathodic reaction rates. Scanning electron microscopy observations and energy dispersive X‐ray measurements complement the findings from electrochemical measurements indicating that only 2‐MBT protects the second phase particles, preventing dealloying, trenching and initiation of corrosion. © 2015 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd.  相似文献   

13.
This study has been conducted to investigate the effects of plastic deformation of an AA2024 aluminium alloy by cold rolling to 25%, 50% and 75% and then heat-treating and naturally ageing for 20 days to T4 on the microstructure and the electrochemical behavior. To characterize the microstructural modifications different techniques have been applied such as X-ray Diffraction (XRD) to demonstrate the intermetallic phases formed, Optical Microscopy (OM) and Scanning Electronic Microscopy (SEM) to evaluate their microstructures and grain size. Moreover, the surface topography has been measured to establish the roughness effect on the mechanical response when subjected to tensile, fatigue and micro-indentation tests. The corrosion behaviour was evaluated by Potentiodynamic Polarization Scanning, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results revealed that cold-rolled samples with 50% plastic deformation show a smoother topography and exhibit the best compromise between mechanical and corrosion resistance.  相似文献   

14.
6061 aluminum alloy is one of the light metal materials, which has the advantages of good elasticity and lightweight. However, aluminum alloy is susceptible to corrosion in industrial applications. Therefore, in this paper, we successfully prepared an organic lauric acid film on the surface of aluminum alloy by electrodeposition. The film was characterized by SEM, EDS, WCA, XPS, EIS, FT-IR, and neutral salt spray test. According to the results of the EIS test, impedance value has increased by two orders of magnitude compared to the substrate, and corrosion current density reached 8.51 × 10−7 A/cm2. The salt spray test was conducted for 192 h before the corrosion point appeared, indicating that the film have better anticorrosion ion permeability. Calculated chemical results show that  COOH of lauric acid is the dominant reaction group and the carboxyl group is near the aluminum alloy surface for the reaction equilibrium state, which provide a theoretical basis for the study of the film.  相似文献   

15.
Static secondary ion mass spectrometry was used to study the chemical reactions and lateral distributions of fatty amines, alcohols and esters spin coated onto gold surfaces and commercial aluminium–magnesium (Al–Mg) alloy surfaces, cleaned using UV–ozone. The aim of this study is to develop an understanding of the interactions of model lubricants with metal surfaces, such as gold and aluminium. This static SIMS study of organic thin films has been able to identify specific reaction products on the aluminium surface for each functional group. This work demonstrates that organic molecules with alcohol, ester and amine functional groups undergo specific chemical reactions with oxidized Al–Mg alloy surfaces. For example, films composed of the fatty alcohol dodecanol were observed to emit monomers, dimers and trimers with discrete distributions. In addition, negative secondary ion mass spectra indicate that a surface carboxylate is formed from the alcohol. The formation of carboxylate reaction products was confirmed by Fourier transform infrared spectroscopy. On Al–Mg alloy surfaces, a direct interaction with the amine and aluminium oxide surface is observed by the detection of a molecular ion that corresponds to the mass of dodecylamine and AlO?, characteristic of aluminium oxide. Ethyl laurate was shown to eliminate the ethyl group, leaving the laurate anion. This study demonstrates the ability of time‐of‐flight (ToF) SIMS to discriminate and detect chemical reaction products formed between model lubricant molecules and metal surfaces. As a result of this study, the use of ToF‐SIMS to identify reaction products of model lubricants can be extended to provide a better understanding of the interactions of lubricants and metal surfaces at high temperatures and pressures that more closely resemble the conditions encountered in industrial rolling processes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The occurrence of preferential grain etching (PGE) during alkaline etching of aluminum extrusion alloys from the 6XXX series is often linked to the presence of certain impurity elements such as zinc, causing an undesired etching appearance. In the presented work, an additional culprit in this context is identified, which has not been investigated yet. A clear relation between PGE and the presence of a subsurface shear layer is identified for extruded Al 6060 alloys containing 0.02 and 0.06 wt% Zn. This shear layer can be distinguished from the bulk of the metal by its difference in crystallographic texture as visualized by electron backscatter diffraction (EBSD). For the Zn enriched alloy, the <111>//ND grains are etched away faster than grains with other orientations, resulting in the grainy appearance typical for PGE. Independent of the Zn content in the alloy, once the shear layer is removed and <111>//ND grains are practically absent on the new surface, the depths variations caused by preferential etching disappear. Instead, the surface of the alloy is attacked uniformly by the caustic etch bath.  相似文献   

17.
Interfacial analysis is essential in many areas of interest, for instance within the ongoing research on environmentally friendly pretreatments of metal surfaces. While studies of the hidden interface between a metal and polymer top‐coat are of great importance, properties of a surface confined between two media are difficult to analyze in detail. Within the two parts of this study, ATR‐FTIR spectroscopy in the Kretschmann geometry is employed as the main analytical tool to study the interface between a thermo‐cured epoxy and aluminum pretreated with a silane film. The technique requires model systems based on thin metal films, but in contrast to most analytical techniques it permits the analysis of a hidden interface. Initial characterization of the silane film formed from a pH‐regulated γ‐APS and BTSE solution was conducted by both ATR‐FTIR Kretschmann and IRRAS spectroscopy. Absorption bands were obtained at 1250–900 cm?1, assigned to Si? O functionalities, and at ~1570 and ~1410 cm?1 assigned to acetate existing as a counter‐ion to γ‐APS. After application of the epoxy film, interfacial alterations were detected upon thermal curing including the densification of the epoxy film, the dehydration of aluminum and the formation of molecular epoxy reaction products. Few alterations could be assigned to the silane film. Calculated spectra derived from optical data can verify experimental results and aid data interpretation, and effects of metal oxidation of aluminum were confirmed by introducing gold as an additional substrate. The results showed that ATR‐FTIR Kretschmann spectroscopy is clearly a valuable tool for the study of hidden interfaces of stratified media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Biofilm studies have extensive significance since their results can provide insights into the behavior of bacteria on material surfaces when exposed to natural water. This is the first attempt of using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) for detecting the polysaccharides formed in a complex biofilm consisting of a mixed consortium of marine microbes. MALDI-MS has been applied to directly analyze exopolysaccharides (EPS) in the biofilm formed on aluminum surfaces exposed to seawater. The optimal conditions for MALDI-MS applied to EPS analysis of biofilm have been described. In addition, microbiologically influenced corrosion of aluminum exposed to sea water by a marine fungus was also observed and the fungus identity established using MALDI-MS analysis of EPS. Rapid, sensitive and direct MALDI-MS analysis on biofilm would dramatically speed up and provide new insights into biofilm studies due to its excellent advantages such as simplicity, high sensitivity, high selectivity and high speed. This study introduces a novel, fast, sensitive and selective platform for biofilm study from natural water without the need of tedious culturing steps or complicated sample pretreatment procedures.  相似文献   

19.
Samples of aluminium alloys AA2024‐T3 and AA7075‐T6 were treated with a chromate‐based deoxidizer, then conversion coated with a commercial cobalt‐based solution and finally sealed with a commercial vanadate‐based product. The alloy specimens were examined using scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectroscopy. The thickness of the cobalt‐based conversion coating increased rapidly up to 5 min of immersion but more slowly for longer times. Sealing resulted in penetration of vanadium through the oxide and a small increase in thickness due to the deposition of a thin sealing coating within the pores and on the external surface of the cobalt‐containing coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A new cerium conversion coating modified with the hydrolysis silane is designed for AZ31 magnesium alloy, which aims at assessing the surface characterizations and electrochemical behaviors between the cerium conversion coating with and without the silane modified. The effect of the silane addictive is studied by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The adhesion of the coatings is undertaken according to the American Society for Testing and Materials (ASTM) standard D3359‐08 cross tape test. The electrochemical behavior is evacuated by polarization experiment and electrochemical impedance spectroscopy (EIS) in NaCl electrolyte. The results show that the addition of bis‐[triethoxysilylpropyl] tetrasulfide (BTESPT) to loosen and porous cerium conversion coating leads to the formation of a more compact and homogenous film, higher resistance to water uptake and better adhesion to substrate. Electrochemical measurements show that, compared with the non‐modified cerium conversion coating, the coating modified with the silane exhibits better anticorrosion properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号