首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of montmorillonite (clay) on the crystallization kinetics of syndiotactic polystyrene (sPS) with isothermal differential scanning calorimetry analyses. The clay was dispersed into the sPS matrix via melt blending on a scale of 1–2 nm or up to about 100 nm, depending on the surfactant treatment. For a crystallization temperature of 240 °C, the isothermal crystallization data were fitted well with the Avrami crystallization equation. Crystallization data on the kinetic parameters (i.e., the crystallization rate constant, Avrami exponent, clay content, and clay/surfactant cation‐exchange ratio) were also investigated. Experimental results indicated that the crystallization rate constant of the sPS nanocomposite increased with increasing clay content. The clay played a vital role in facilitating the formation on the thermodynamically more favorable all‐β‐form crystal when the sPS was melt‐crystallized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2097–2107, 2001  相似文献   

2.
X‐ray diffraction methods were used in an investigation of the structural changes in syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay was prepared by the intercalation of sPS polymer into layered montmorillonite. Both X‐ray diffraction data and transmission electron microscopy micrographs of sPS/clay nanocomposites indicated that most of the swellable silicate layers were exfoliated and randomly dispersed in the sPS matrix. The X‐ray diffraction data also showed the presence of polymorphism in the sPS/clay nanocomposites. This polymorphic behavior was strongly dependent on the thermal history of the sPS/clay nanocomposites from the melt and on the content of clay in the sPS/clay nanocomposites. Quenching from the melt induced crystallization into the α‐crystalline form, and the addition of montmorillonite probably increased heterophase nucleation of the α‐crystalline form. The effect of the melt crystallization of sPS and sPS/clay nanocomposites at different temperatures on the crystalline phases was also examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 736–746, 2002  相似文献   

3.
Monoalkyl- and dialkyl-imidazolium surfactants were used to prepare organically modified montmorillonites with markedly improved thermal stability in comparison with their alkyl-ammonium equivalents (the decomposition temperatures increased by ca. 100 °C). Such an increase in the thermal stability affords the opportunity to form syndiotactic polystyrene (s-PS)/imidazolium-montmorillonite nanocomposites even under static melt-intercalation conditions in the absence of high shear rates or solvents. Upon nanocomposite formation, s-PS exhibited an improvement in the thermal stability in comparison with neat s-PS, and the β-crystal form of s-PS became dominant. This crystallization response agrees with previous studies of s-PS/pyridinium-montmorillonite hybrids and is tentatively attributed to a heterogeneous nucleation action by the inorganic fillers. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3173–3187, 2003  相似文献   

4.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

5.
The nonisothermal cold crystallization behavior of intercalated polylactide (PLA)/clay nanocomposites (PLACNs) was studied using differential scanning calorimetry, polarized optical microscope, X‐ray diffractometer, dynamic mechanical thermal analysis, and Fourier transform infrared spectrometer. The results show that both the cold crystallization temperature (Tcc) and melting point (Tm) of PLA matrix decreases monotonously with increasing of clay loadings, accompanied by the decreasing degree of crystallinity (Xc%) at the low heating rates (≤5 °C/min). However, the Xc% of PLACNs presents a remarkable increase at the high heating rate of 10 °C/min in contrast to that of neat PLA. The crystallization kinetics was then analyzed by the Avrami, Jezioney, Ozawa, Mo, Kissinger and Lauritzen–Hoffman kinetic models. It can be concluded that at the low heating rate, the cold crystallization of both the neat PLA and nanocomposites proceeds by regime III kinetics. The nucleation effect of clay promote the crystallization to some extent, while the impeding effect of clay results in the decrease of crystallization rate with increasing of clay loadings. At the high heating rate of 10 °C/min, crystallization proceeds mainly by regime II kinetics. Thus, the formation of much more incomplete crystals in the PLACNs with high clay loadings due to the dominant multiple nucleations mechanism in regime II, may have primary contribution to the lower crystallization kinetics, also as a result to the higher degree of crystallinity and lower melting point in contrast to that of neat PLA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1100–1113, 2007  相似文献   

6.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101  相似文献   

7.
X‐ray diffraction methods and differential scanning calorimetry thermal analysis have been used to investigate the structural changes of syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay nanocomposites have been prepared by the mixing of sPS polymer solutions with organically modified montmorillonite. X‐ray diffraction data and differential scanning calorimetry results indicate that the dominating crystal forms and their relative fractions in sPS and sPS/clay nanocomposites are different for various premelting temperatures (Tmax's). Higher Tmax's favor the formation of the thermodynamically more stable β‐crystalline form, and its relative fraction has been obtained from the X‐ray diffraction data in the range of 11.5–13°. The intensity of the X‐ray diffraction data in the range of 11.5–13° decreases as the thickness of sPS/clay nanocomposites decreases from 150 to 20 μm. At the same time, the intensity of the X‐ray data in the range of 6–7° becomes sharper as the thickness of sPS/clay nanocomposites decreases. The calculation ratio based on the peak intensities at 6.2 and 6.8° for sPS/clay nanocomposites of equal thickness and crystallinity in the pure β and α forms has also been determined in this study. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1730–1738, 2003  相似文献   

8.
Thermally induced crystallization in glassy syndiotactic polystyrene   总被引:2,自引:0,他引:2  
The thermal crystallization of glassy amorphous syndiotactic polystyrene has been studied using infrared, x-ray, and thermal analysis. The kinetics of the process is very rapid and the obtained crystalline phase is characterized by chains in zig-zag planar conformation. The use of the infrared analysis is indeed based on the presence of a skeleton band related to the zig-zag planar sequences. However infrared and x-ray data disagree in the evaluation of crystallinity, and a structural model has been proposed to account this experimental evidence. In particular the presence of a phase of intermediate order between amorphous and crystalline has been suggested. This mesomorphic phase is characterized by conformational order, and probably by crystalline order at very short range, both not sufficient to give rise to discrete x-ray diffraction patterns.  相似文献   

9.
Polyamide 6 (PA6)/montmorillonite (MMT) nanocomposites were prepared via melt intercalation. The structure, mechanical properties, and nonisothermal crystallization kinetics of PA6/MMT nanocomposites were investigated by X‐ray diffraction (XRD), tensile and impact tests, and differential scanning calorimetry (DSC). Before melt compounding, MMT was treated with an organic surfactant agent. XRD traces showed that PA6 crystallizes exclusively in γ‐crystalline structure within the nanocomposites. Tensile measurements showed that the MMT additions are beneficial in improving the strength and the stiffness of PA6, at the expense of tensile ductility. Impact tests revealed that the impact strength of PA6/MMT nanocomposites tended to decrease with increasing MMT content. The nonisothermal crystallization DSC data were analyzed by Avrami, Ozawa, modified Avrami‐Ozawa, and Nedkov methods. The validity of these empirical equations on the nonisothermal crystallization process of PA6/MMT nanocomposites is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2878–2891, 2004  相似文献   

10.
In this work, a two phase crystallization model based on the extension of the Kolmogoroff approach was proposed and verified by comparison with experimental isothermal and nonisothermal crystallization data of Syndiotactic Polystyrene (sPS) in a very wide range of cooling rates, up to 600 °C/s. To investigate the effects of high cooling rate on the sPS crystalline structure, a homemade apparatus was adopted. The morphology in solid samples was analyzed by densitometry, IR spectroscopy, and X‐rays diffraction. The coupling of these techniques allows the determination of the fractions of different crystalline phases. In agreement with melt‐crystallization studies of sPS proposed by different authors, either α and β forms could be produced depending on the thermal history of the sample. Results show that the stable β form is favored for specimens solidified at higher temperature or under low cooling rates, whereas α and mesomorphic forms are favoured at low temperature or high cooling rates. The proposed multiphase crystallization kinetics model successfully described all the range of experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1757–1766, 2010  相似文献   

11.
The nonisothermal crystallization behavior of syndiotactic polystyrene (SPS)/atactic polystyrene (APS) blends was studied with differential scanning calorimetry to investigate the effects of APS on the crystallization behavior of SPS. Polarized optical microscopy and wide‐angle X‐ray diffractometry were also used to observe the morphology of the SPS crystalline structure. From a cyclic heating/cooling temperature program, we obtained found that APS retarded the crystallization (and recrystallization) of SPS and made the crystal less perfect, but the ultimate crystallinity of SPS did not change with the addition of APS. We also observed that APS was disposed in the interfibrillar region of SPS spherulites and did not change the crystalline form of SPS. This result will be helpful for improving SPS applications through blending with rubber‐toughened APS. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3001–3008, 2000  相似文献   

12.
Syndiotactic polypropylenes and their copolymers with 1‐olefins were synthesized using two metallocene/MAO catalytic systems, and the effect of the different microstructures on nonisothermal crystallization and subsequent melting was studied. Using differential scanning calorimetry (DSC) it was observed that samples with lower content of defects showed crystallization on cooling from the melt, and a double melting peak in the subsequent heating scan, the latter associated with melt, recrystallization and remelt processes that it was confirmed by its nonreversing exothermic process found by means of temperature modulated DSC (MDSC). However, polymers with high amount of defects showed cold crystallization on heating followed by a melting process, that it was observed by MDSC. Wide angle X‐ray diffraction was used for characterizing the changes of crystalline forms in relationship with crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 798–806, 2008  相似文献   

13.
This article reports the nonisothermal crystallization behavior of MXD6 and its clay nanocomposite system (MXD6/MMT) using differential scanning calorimetry (DSC). The DSC experimental data were analyzed by theoretical modeling of the crystallization kinetics using the Avrami, Ozawa, Jeziorny, and the combined Avrami–Ozawa semiempirical models. It has been determined that these models adequately described the crystallization behavior of the MXD6 nanocomposite at cooling rates below 20 °C/min, but there was a deviation from linear dependence at higher cooling rates. This was attributed to changes of both the free energy and the cooling crystallization function K(T) over the entire crystallization process, as well as possible relaxation effects leading to structural rearrangements. In addition, the activation energy determined using the differential isoconversional method of Friedman was also found to vary, indicating changes in both the free energy and crystallization mechanism. Despite the lack of a reliable theoretical model, the heterogeneous nucleating activity of the MMT nanoparticles was demonstrated and quantified using Dobreva's method (? = 0.71), and the crystallization rate for the nanocomposite system was found to be greater than pure MXD6 by up to 79% at 40 °C/min. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1300–1312, 2009  相似文献   

14.
The influence of two concentrations of clay nanoparticles on the nonisothermal crystallization behavior of the intercalated polypropylene-clay nanocomposites is investigated here. It is observed that the crystallization peak temperature (Tp) of PP-clay nanocomposites is marginally higher than neat PP at various cooling rates. Furthermore, the half-time for crystallization (t0.5) decreased with increase in clay content, implying the nucleating role of clay nanoparticles. The nonisothermal crystallization data is analyzed using Avrami, Ozawa and Mo and coworkers methods. The validity of kinetic models on the nonisothermal crystallization process of PP-clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully describes the nonisothermal crystallization behavior of PP and PP-clay nanocomposites. The activation energy for nonisothermal crystallization of pure PP and PP-clay nanocomposites based on Kissinger method is evaluated.  相似文献   

15.
The analysis of chloroform vapor sorption at 35°C in semicrystalline syndiotactic polystyrene samples shows remarkably different sorption isotherms, depending on the crystalline form of the samples. In particular, “emptied” clathrate (“emptied” δ form) samples are characterized by higher equilibrium sorption levels and the differences are particularly relevant for low vapor activities. Moreover, sorption kinetics detected at a vapor activity equal to 0.5 show that in the case of “emptied” δ form samples the sorption rate is much higher than for the other semicrystalline samples. The larger sorption equilibrium uptakes and sorption rates of the “emptied” δ form samples are essentially due to their ability to absorb chloroform, already for low activities, by clathration in the crystalline phase. The measured equilibrium uptakes and sorption kinetics suggest that “emptied” δ form samples of syndiotactic polystyrene could be suitable for removing polluting chlorinated compounds from vapor and liquid streams. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
The crystallization behavior of miscible syndiotactic polystyrene (sPS) and atactic polystyrene (aPS) blends with different sPS/aPS weight ratios was investigated in supercritical CO2 by using Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Supercritical CO2 and aPS exhibited different effects on the conformational change of sPS and competed with each other. Increasing the content of amorphous aPS in the blends made its effect on the conformational change of sPS gradually surpass that of supercritical CO2. Supercritical CO2 favored the formation of the helical conformation of sPS in lower temperature range and the all trans planar conformation in higher temperature range, instead of forming the latter one only in higher temperature range in ambient atmosphere. However, increasing aPS content in the blends pushed the range for forming the helical conformation to lower temperature and made the all trans planar conformation dominant in aPS/sPS 25/75 blend after treating in supercritical CO2 above 60 °C. The all trans planar zigzag conformation was more favorable than the helical conformation after mixing aPS in sPS in supercritical CO2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1755–1764, 2007  相似文献   

17.
Syndiotactic polystyrene (sPS) has to be processed at high temperatures (i.e. >290°C due to its melting point of 270°C), which approaches its degradation temperature. We aim to facilitate the processing of sPS by lowering its melt temperature and viscosity with a curable epoxy/amine model system as reactive solvent, which will result in a thermoplastic-thermoset polymer blend. As a first step we therefore investigated the melting behaviour of sPS in epoxy monomer, established its phase diagram, and investigated the crystalline form of sPS in these mixtures. DGEBA epoxy monomer is found to be a solvent for syndiotactic polystyrene at temperatures above 220°C. The DGEBA-sPS phase diagram was established by means of DSC, on the basis of crystallization and melting peaks. The form of the curve in the phase diagram indicates that DGEBA is a poor solvent for sPS. In WAXS studies of blends only the β crystalline form was detected, not the δ form, thus no sPS-DGEBA polymer-solvent compounds (clathrates) were detected. However, DGEBA can still serve as a monomer for improved processing as it depresses the crystallization temperature by 20 to 60 K upon addition of 20 to 90 wt% DGEBA respectively, while a 16 to 45 K melting peak depression can be observed by adding 20 to 90 wt% DGEBA.  相似文献   

18.
用差示扫描量热分析研究了间规聚苯乙烯(sPS)的非等温结晶及其动力学,并分别用Ozawa和Jeziorny两种方法来处理sPS的非等温结晶数据.结果表明,在25~40℃/min的冷却速率范围内,sPS的半结晶时间随冷却速率增大而呈指数式下降,sPS非等温结晶过程遵循Ozawa动力学方程,但不符合Jeziorny方法中的Avrami动力学方程.所得到的sPS非等温结晶Avrami指数n在36~41之间,高于等温结晶时的n值  相似文献   

19.
Crystalline structures, nonisothermal crystallization behavior and surface folding free energy of polypropylene (PP)/poly(ethylene‐co‐vinyl acetate) (EVA) blend‐based organically modified montmorillonite (OMMT) nanocomposites were investigated by use of wide angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Nonisothermal crystallization kinetic analysis was performed using Avrami equation modified by Jeziorny as well as combined Avrami‐Ozawa method. Surface folding free energy and activation energy for PP and nanocomposite samples were also determined employing Hoffman‐Lauritzen's and Vyazovkins's approaches, respectively. The results obtained from transmission electron microscopy (TEM) showed that presence of EVA, which attracts most of the layered silicates, reduces number density of heterogeneous nuclei in the matrix and as a consequence, decreases the nucleation rate. Incorporation of EVA, PP‐g‐MA and OMMT results in a decrease of the chain surface folding free energy level. It was shown that although, OMMT acts as a barrier against the PP macromolecular motion but interestingly, it increases the overall crystallization rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 674–684, 2009  相似文献   

20.
X-ray diffraction and optical microscopy characterization were performed to evaluate the phenomenon of alteration of polymorphism of syndiotactic polystyrene (s-PS) in the presence of other blending miscible polymers: poly(2,6-dimethyl-p-phenylene oxide) (PPO) or atactic polystyrene (a-PS). Both α and β crystal forms were observed in the neat s-PS sample, but only β-form crystal was found in miscible blends of s-PS with a-PS or PPO. The order and neighboring chain segments of neat s-PS are different from those of s-PS/PPO or s-PS/a-PS blends; thus, it is plausible that the greater randomness in the melt state of s-PS/a-PS or s-PS/PPO blends might be unfavorable for formation of α-form crystals from melts. The final spherulitic morphology the s-PS/a-PS or s-PS/PPO blends suggests that the amorphous-state miscibility of does not change much the spherulitic structure of s-PS. The radial growth rate is, in general, depressed with the presence of blending miscible polymers in s-PS of equal Tg or PPO of higher Tg. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2725–2735, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号