首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

2.
Quantum chemical calculations using density functional theory at the BP86/TZ2P level have been carried out to determine the geometries and stabilities of Group 13 adducts [(PMe3)(EH3)] and [(PMe3)2(E2Hn)] (E=B–In; n=4, 2, 0). The optimized geometries exhibit, in most cases, similar features to those of related adducts [(NHCMe)(EH3)] and [(NHCMe)2(E2Hn)] with a few exceptions that can be explained by the different donor strengths of the ligands. The calculations show that the carbene ligand L=NHCMe (:C(NMeCH)2) is a significantly stronger donor than L=PMe3. The equilibrium geometries of [L(EH3)] possess, in all cases, a pyramidal structure, whereas the complexes [L2(E2H4)] always have an antiperiplanar arrangement of the ligands L. The phosphine ligands in [(PMe3)2(B2H2)], which has Cs symmetry, are in the same plane as the B2H2 moiety, whereas the heavier homologues [(PMe3)2(E2H2)] (E=Al, Ga, In) have Ci symmetry in which the ligands bind side‐on to the E2H2 acceptor. This is in contrast to the [(NHCMe)2(E2H2)] adducts for which the NHCMe donor always binds in the same plane as E2H2 except for the indium complex [(NHCMe)2(In2H2)], which exhibits side‐on bonding. The boron complexes [L2(B2)] (L=PMe3 and NHCMe) possess a linear arrangement of the LBBL moiety, which has a B?B triple bond. The heavier homologues [L2(E2)] have antiperiplanar arrangements of the LEEL moieties, except for [(PMe3)2(In2)], which has a twisted structure in which the PInInP torsion angle is 123.0°. The structural features of the complexes [L(EH3)] and [L2(E2Hn)] can be explained in terms of donor–acceptor interactions between the donors L and the acceptors EH3 and E2Hn, which have been analyzed quantitatively by using the energy decomposition analysis (EDA) method. The calculations predict that the hydrogenation reaction of the dimeric magnesium(I) compound L′MgMgL′ with the complexes [L(EH3)] is energetically more favorable for L=PMe3 than for NHCMe.  相似文献   

3.
The reactions of bis(borohydride) complexes [(RN?)Mo(BH4)2(PMe3)2] ( 4 : R=2,6‐Me2C6H3; 5 : R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN?)Mo(H)(SiR′3)(PMe3)3] ( 3 : R=Ar, R′3=H2Ph; 8 : R=Ar′, R′3=H2Ph; 9 : R=Ar, R′3=(OEt)3; 10 : R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN?)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN?)Mo(H)2(SiH2Ph)2(PMe3)2] ( 19 ). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] ( 18 ). This latter species does not undergo the elimination of a Si? O group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN?)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations.  相似文献   

4.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

5.
The thioether functionalized aminosilanes Me2Si(NH‐C6H4‐2‐SR)2 (R = Ph, Me) were lithiated with nBuLi and subsequently reacted with AgCl in the presence of PMe3 or with [AuCl(PMe3)]. In the case of Me2Si(NH‐C6H4‐2‐SPh)2 the dinuclear complexes [M2{Me2Si(NC6H4‐2‐SPh)2}(PMe3)2] (M = Ag; Au) were isolated. The analogous reactions starting from Me2Si(NH‐C6H4‐SMe)2 afforded the dinuclear gold complex [Au2{Me2Si(NC6H4‐2‐SMe)2}(PMe3)2] and the tetranuclear silver complex [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2]. In the dinuclear compounds of the type [M2{Me2Si(NC6H4‐2‐SR)2}(PMe3)2], each of the silylamide N atoms is connected to a M(PMe3) group to give a nearly linear N–M–P arrangement with Ag–N and Au–N bonds in the range of 212.0(4)–213.3(4) pm and 205.3(3)–208.1(9) pm, respectively. [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2] consists of a central Si2N4Ag2 ring with linearly coordinated Ag atoms (Ag‐N: 223.1(4)–222.1(4) pm) and two peripheral Ag(PMe3) units, which are connected to the amido N atoms in a chelating mode. The relatively short transannular Ag ··· Ag separation (277.6(1) pm) within the Si2N4Ag2 ring hints for argentophilic interactions. The peripheral Ag atoms are three coordinated with Ag–N distances of 233.9(4)–242.8(4) pm.  相似文献   

6.
Syntheses and Crystal Structures of Cu and Ag Complexes with [Ta6S17]4— Ions as Ligands In the presence of phosphines saturated solutions of the thiotantalates (NEt4)4[(Ta6S17)] · 3MeCN react with copper or silver salts to give new heterobimetallic Ta—M—S clusters (M = Ag, Cu). These clusters contain the intact cluster core of the [Ta6S17]4— anion. Compounds [Cu(PMe3)4]3[(Ta6S17)Cu(PMe3)] · 2MeCN ( 1 ), (NEt4)[(Ta6S17)Ag3(PMe2iPr)6] · 5MeCN ( 2 ), [(Ta6S17)Cu4 (PMe2iPr)8] · MeCN ( 3 ), [(Ta6S17)Cu5Cl(PMe2iPr)9] · MeCN ( 4 ) and [Ta2Cu2S4Cl2(PMe2iPr)6] · 2MeCN ( 5 ) are presented herein. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

7.
Density functional calculations at the BP86/TZ2P level were carried out to understand the ligand properties of the 16‐valence‐electron(VE) Group 14 complexes [(PMe3)2Cl2M(E)] ( 1ME ) and the 18‐VE Group 14 complexes [(PMe3)2(CO)2M(E)] ( 2ME ; M=Fe, Ru, Os; E=C, Si, Ge, Sn) in complexation with W(CO)5. Calculations were also carried out for the complexes (CO)5W–EO. The complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] bind strongly to W(CO)5 yielding the adducts 1ME–W(CO)5 and 2ME–W(CO)5 , which have C2v equilibrium geometries. The bond strengths of the heavier Group 14 ligands 1ME (E=Si–Sn) are uniformly larger, by about 6–7 kcal mol?1, than those of the respective EO ligand in (CO)5W‐EO, while the carbon complexes 1MC–W(CO)5 have comparable bond dissociation energies (BDE) to CO. The heavier 18‐VE ligands 2ME (E=Si–Sn) are about 23–25 kcal mol?1 more strongly bonded than the associated EO ligand, while the BDE of 2MC is about 17–21 kcal mol?1 larger than that of CO. Analysis of the bonding with an energy‐decomposition scheme reveals that 1ME is isolobal with EO and that the nature of the bonding in 1ME–W(CO)5 is very similar to that in (CO)5W–EO. The ligands 1ME are slightly weaker π acceptors than EO while the π‐acceptor strength of 2ME is even lower.  相似文献   

8.
The Reaction of [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 with LiCH(PMe2)2; Formation of a Five-membered Al2C2P Heterocycle The recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 3 reacts with one equivalent of LiCH(PMe2)2 in the presence of TMEDA to give an adduct with one aluminium atom coordinated by the carbanionic carbon atom and the second one coordinated by one phosphorus atom. A five-membered heterocycle 5 is formed, which was characterized by a crystal structure determination showing a strongly bent ring with the phosphorus atom located above the plane of the four remaining atoms (Al2C2). 5 is unstable in ethereal solution decomposing under ether cleavage to the educt 3 and the diphosphinomethane derivative CH2(PMe2)2.  相似文献   

9.
Metallacyclic complex [(Me2N)3Ta(η2‐CH2SiMe2NSiMe3)] ( 3 ) undergoes C?H activation in its reaction with H3SiPh to afford a Ta/μ‐alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ‐H)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 4 ). Deuterium‐labeling studies with [D3]SiPh show H–D exchange between the Ta?D ?Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ‐D)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]‐ 4 ) to give the partially deuterated complex [Dn]‐ 4 . In addition, 4 undergoes β‐H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3Si)2N}Ta(μ‐H)(μ‐N‐η2‐C,N‐CH2NMe)(μ‐C‐η2‐C,N‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 5 ) with a cyclometalated, η2‐imine ligand. These results indicate that there are two simultaneous processes in [Dn]‐ 4 : 1) H–D exchange through σ‐bond metathesis, and 2) H?D elimination through β‐H abstraction (to give [Dn]‐ 5 ). Both 4 and 5 have been characterized by single‐crystal X‐ray diffraction studies.  相似文献   

10.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

11.
A series of unprecedented bis‐silylene titanium(II) complexes of the type [(η5‐C5H5)2Ti(LSiX)2] (L=PhC(NtBu)2; X=Cl, CH3, H) has been prepared using a phosphane elimination strategy. Treatment of the [(η5‐C5H5)2Ti(PMe3)2] precursor ( 1 ) with two molar equivalents of the N‐heterocyclic chlorosilylene LSiCl ( 2 ), results in [(η5‐C5H5)2Ti(LSiCl)2] ( 3 ) with concomitant PMe3 elimination. The presence of a Si? Cl bond in 3 enabled further functionalization at the silicon(II) center. Accordingly, a salt metathesis reaction of 3 with two equivalents of MeLi results in [(η5‐C5H5)2Ti(LSiMe)2] ( 4 ). Similarly, the reaction of 3 with two equivalents of LiBHEt3 results in [(η5‐C5H5)2Ti(LSiH)2] ( 5 ), which represents the first example of a bis‐(hydridosilylene) metal complex. All complexes were fully characterized and the structures of 3 and 4 elucidated by single‐crystal X‐ray diffraction analysis. DFT calculations of complexes 3 – 5 were also carried out to assess the nature of the titanium–silicon bonds. Two σ and one π‐type molecular orbital, delocalized over the Si‐Ti‐Si framework, are observed.  相似文献   

12.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

13.
Alternative Ligands. XXII. Rhodium(I) complexes with Donor/Acceptor Ligands of the Typs Me2PCH2CH2SiXnMe3?n(X = F, Cl, OMe) Donor/acceptor ligand of the type Me2PCH2SiXnMe3?n react with [Rh(CO)2Cl]2 ( 1 ) to give the mononuclear complexes RhCl(CO)(PMe2CH2CH2SiXnMe3?n)2 ( 2-6 , Table 1) with planar geometry of the donor atoms, one exception being Me2PCH2CH2CH2SiCl3, yielding the crystalline RhIII-complex RhCl2(CO)(PMe2CH2CH2SiCl2)(PMe2CH2CH2SiCl3) ( 7 ) by oxidative addition of one of the SiCl bonds to the Rh1 precursor. Structures with Rh → Si interaction between the basic central atoms and the acceptor group SiXnMe3?n could be detected in the isolated products neither spectroscopically nor by X-ray diffraction of the two representatives RhCl(CO)(PMe2CH2CH2SiF3)2 ( 2 ) and RhCl(CO)[PMe2CH2CH2siF3]2 ( 2 ) and RhCl(CO) [PMe2CH2CH2Si(OMe3]2 ( 6 ). The presence of such acid/base adducts in the reaction mixture is indicated for the more acidic acceptor groups SiXnMe3?n byvco values near 1990cm?1, (see Table 3). The complex RhCl(CO)PMe3)(PMe2CH2CH2SiF3 ( 8 ) is obtained by the reaction of RhCl(CO)(PMe3)2 ( 9 ) with Me2PCH2SiF3 and has been identified spectroscopically in a mixture with 2 and 9 .  相似文献   

14.
The reaction of the 2,2‐bis(organodichlorostannyl)propane [(Me3Si)2CH(Cl2)Sn]2CMe2 (A) with the corresponding organotin oxide {[(Me3Si)2CH(O)Sn]2CMe2}2 (B) does not provide the corresponding normally expected tetraorganodistannoxane {[(Me3Si)2CH(Cl)SnCMe2Sn(Cl)CH(SiMe3)2]O}n but a complex reaction mixture. One major product, namely the 2,4,6,8‐tetraorgano‐2,6‐dichloro‐1,5,9‐trioxa‐2,4,6,8‐tetrastannabicyclo[3.3.1]nonane derivative [(Me3Si)2CHSnCMe2Sn(Cl)CH(SiMe3)2]2O3 (C) was identified in situ by 2D 1H? 119Sn and 1H? 13C heteronuclear multiple quantum coherence and heteronuclear multiple bond correlation NMR spectroscopy as well as electrospray mass spectrometry. Compound C is proposed to be in equilibrium with an ionic species C′, the cation of which has an adamantane‐type structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A cyclic (alkyl)(amino)germylene undergoes a ring expansion reaction with dibromomesitylborane (MesBBr2) to afford a six‐membered dibromogermane derivative. In the presence of Lewis bases (PMe3 or MeNHC), reduction of the latter with two equivalents of potassium graphite (KC8) gives rise to cyclic (alkyl)(boryl)germylene–Lewis base adducts. Upon heating, the germylene—PMe3 adduct reacts with H2 to yield a germane, probably via a base‐free germylene featuring a small HOMO–LUMO gap.  相似文献   

16.
Addition of PR3 (R=Ph or OPh) to [Cu(η2‐Me6C6)2][PF6] results in the formation of [(η6‐Me6C6)Cu(PR3)][PF6], the first copper–arene complexes to feature an unsupported η6 arene interaction. A DFT analysis reveals that the preference for the η6 binding mode is enforced by the steric clash between the methyl groups of the arene ligand and the phenyl rings of the phosphine co‐ligand.  相似文献   

17.
The synthesis and single crystal X‐ray structure determination are reported for the 2,2′ : 6′,2″‐terpyridine (= tpy) adduct of bismuth(III) nitrate. The hydroxide‐bridged dimer [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy)(η2‐NO3)2] with nine‐coordinate geometry about Bi was the only isolable product from all crystallization attempts in varying ratios of Bi(NO3) : terpy.; [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy) · (η2‐NO3)2] is triclinic, P 1, a = 7.941(8), b = 10.732(9), c = 11.235(9) Å; α = 63.05(1), β = 85.01(1), γ = 79.26(1)°, Z = 1, dimer, R = 0.058 for N0 = 2319.  相似文献   

18.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

19.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

20.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号