首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to its outstanding elastic properties, the nitride spinel γ‐Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4‐analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite‐type BeP2N4 by single‐crystal synchrotron X‐ray diffraction and report the phase transition into the spinel‐type phase at 47 GPa and 1800 K in a laser‐heated diamond anvil cell. The structure of spinel‐type BeP2N4 was refined from pressure‐dependent in situ synchrotron powder X‐ray diffraction measurements down to ambient pressure, which proves spinel‐type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel‐type BeP2N4 is an ultraincompressible material.  相似文献   

2.
BeP2N4 was synthesized in a multi‐anvil apparatus starting from Be3N2 and P3N5 at 5 GPa and 1500 °C. The compound crystallizes in the phenakite structure type (space group R$\bar 3$ , no. 148) with a=1269.45(2) pm, c=834.86(2) pm, V=1165.13(4)×106 pm³ and Z=18. As isostructural and isovalence‐electronic α‐Si3N4 transforms into β‐Si3N4 at high pressure and temperature, we studied the phase transition of BeP2N4 into the spinel structure type by using density functional theory calculations. The predicted transition pressure of 24 GPa is within the reach of today’s state of the art high‐pressure experimental setups. Calculations of inverse spinel‐type BeP2N4 revealed this polymorph to be always higher in enthalpy than either phenakite‐type or spinel‐type BeP2N4. The predicted bulk modulus of spinel‐type BeP2N4 is in the range of corundum and γ‐Si3N4 and about 40 GPa higher than that of phenakite‐type BeP2N4. This finding implies an increase in hardness in analogy to that occurring for the β‐ to γ‐Si3N4 transition. In hypothetical spinel‐type BeP2N4 the coordination number of phosphorus is increased from 4 to 6. So far only coordination numbers up to 5 have been experimentally realized (γ‐P3N5), though a sixfold coordination for P has been predicted for hypothetic δ‐P3N5. We believe, our findings provide a strong incentive for further high‐pressure experiments in the quest for novel hard materials with yet unprecedented structural motives.  相似文献   

3.
Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.  相似文献   

4.
Pure silicon carbide and silicon nitride have valuable properties in bulk pore-free form; however, their industrial exploitation has hardly been possible so far. Neither compound can be melted or sintered in pure form; hot pressing or sintering at normal pressure requires the presence of additives; and the reaction-sintering process in which only Si and C or Si and N are employed as additives affords porous materials.–The novel process of chemical vapor deposition has partly overcome the drawbacks of the previous methods. In the new process SiC is produced, e.g., by pyrolysis of CH3SiCl3, and Si3N4 by reaction of SiCl4 with NH3. This technique can also be used for pore filling in objects made of SiC and Si3N4 (gas phase impregnation) and for producing extremely fine SiC and Si3N4 (gas phase impregnation) and for producing extremely fine SiC and Si3N4 powder and SiC monofilaments suitable as components for SiC composites. Moreover, gas phase impregnation can also give fiber composites.  相似文献   

5.
A rarity in solid‐state chemistry is octahedrally coordinated silicon. Ce16Si15O6N32 is the first nitridosilicate with this structural motif. Most oxosilicates containing octahedrally coordinated silicon are high‐pressure phases. In contrast to that Ce16Si15O6N32 has been synthesized under ambient pressure. An SiN6 octahedron that is surrounded by two parallel rings formed from six Si(O,N)4 tetrahedra is depicted.  相似文献   

6.
A series of neutral pentacoordinate silicon(IV) complexes with a SiO3NC, SiO2SNC, SiO2SeNC, SiO2N2C, SiOSN2C, or SiOSeN2C skeleton was synthesized and structurally characterized by multinuclear NMR spectroscopy in the solid state and in solution and by single‐crystal X‐ray diffraction. The compounds studied contain a tridentate dianionic O,N,O or N,N,O ligand, an anionic PhX ligand (X = O, S, Se), and a phenyl group. The structures, NMR spectroscopic parameters, and chemical properties of these silicon(IV) complexes were compared with those of related compounds that contain a tridentate dianionic S,N,O ligand instead of the O,N,O or N,N,O ligand.  相似文献   

7.
Owing to its outstanding elastic properties, the nitride spinel γ-Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4-analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite-type BeP2N4 by single-crystal synchrotron X-ray diffraction and report the phase transition into the spinel-type phase at 47 GPa and 1800 K in a laser-heated diamond anvil cell. The structure of spinel-type BeP2N4 was refined from pressure-dependent in situ synchrotron powder X-ray diffraction measurements down to ambient pressure, which proves spinel-type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel-type BeP2N4 is an ultraincompressible material.  相似文献   

8.
The new ternary phase Ni16Si9Al was synthesized from the elements. The compound is formed in a presumably peritectoid reaction at 786 °C and has a narrow homogeneity range around the nominal composition. It adopts an orthorhombic structure (space group Cmcm) related to Ni3Si2. It was found, that one particular position is occupied by aluminum together with silicon causing slight splitting and thus leading to a local symmetry break in the structure. Both, Ni16Si9Al and Ni3Si2, show related structural motifs and can be described by a combination of flat layers and puckered slabs with interatomic distances indicating covalent interactions between the atoms.  相似文献   

9.
Structure and Properties of Ba2Mg3Si4, a Zintl Phase with Planar Si6 Units Within the scope of the investigations on the phase system Ba/Mg/Si a new ternary Zintl phase of the composition Ba2Mg3Si4 was found and structurally characterized. The silicon substructure is built up of Si2 pairs and a new type of Zintl anion, a planar Si6 chain. Temperature dependent measurements of the electric conductivity and the magnetic susceptibility show a metallic behavior. Accompanying quantumchemical investigations on the base of the LMTO-ASA method confirm these results and allow an insight in the present bond situation.  相似文献   

10.
Phosphorus oxonitride (PON) is isoelectronic with SiO2 and may exhibit a similar broad spectrum of intriguing properties as silica. However, PON has only been sparsely investigated under high‐pressure conditions and there has been no evidence on a PON polymorph with a coordination number of P greater than 4. Herein, we report a post‐coesite (pc) PON polymorph exhibiting a stishovite‐related structure with P in a (5+1) coordination. The pc‐PON was synthesized using the multianvil technique and characterized by powder X‐ray diffraction, solid‐state NMR spectroscopy, TEM measurements and in situ synchrotron X‐ray diffraction in diamond anvil cells. The structure model was verified by single‐crystal X‐ray diffraction at 1.8 GPa and the isothermal bulk modulus of pc‐PON was determined to K0=163(2) GPa. Moreover, an orthorhombic PON polymorph (o‐PON) was observed under high‐pressure conditions and corroborated as the stable modification at pressures above 17 GPa by DFT calculations.  相似文献   

11.
The neutral pentacoordinate silicon(IV) complex 10 (SiON3C skeleton) and the neutral hexacoordinate silicon(IV) complex 11 (SiON4C skeleton) were synthesized, starting from methyldi(thiocyanato‐N)silane ( 7 ). In addition to their monodentate thiocyanato‐N and methyl ligands, these compounds contain a tridentate dianionic O,N,N ligand ( 10 ) or a tridentate monoanionic O,N,N ligand ( 11 ). Compounds 10 and 11 were characterized by single‐crystal X‐ray diffraction and solid‐state and solution NMR spectroscopy. According to these studies, compounds 10 and 11 exist in solution as well.  相似文献   

12.
The molecular structures of two N‐pentafluorophenylcyclosilazoxanes have been investigated. X‐Ray crystal structure determinations of (C6F5)3Me8Si4N3O ( 2 ) and (C6F5)2Me12Si6N2O4 ( 3 ) revealed the first structurally authenticated examples of eight‐membered Si4N3O and twelve‐membered Si6N2O4 ring systems.  相似文献   

13.
Ca5[Si2Al2N8] was synthesized from elementary aluminum and silicon with phase‐pure tricalcium dinitride at 1280 K under dry argon in a sealed niobium ampoule. Ca3N2 was freshly prepared from distilled calcium metal in a dry nitrogen atmosphere. The compound crystallizes in form of transparent yellow distorted octahedra. In air and under moisture Ca5[Si2Al2N8] undergoes hydrolysis. The structure was determined from a single crystal to be orthorhombic (space group Pbcn – no. 60, a = 925.5, b = 614.0 and c = 1557.8 pm). The nitridoaluminate and ‐silicate substructures are separated into planes of edge and corner‐shared aluminate tetrahedra, which are linked by edge‐sharing double tetrahedral pillars of the silicate. The structure was confirmed by electrostatic and quantum mechanical analysis.  相似文献   

14.
Non‐metal nitrides such as BN, Si3N4, and P3N5 meet numerous demands on high‐performance materials, and their high‐pressure polymorphs exhibit outstanding mechanical properties. Herein, we present the silicon phosphorus nitride imide SiP2N4NH featuring sixfold coordinated Si. Using the multi‐anvil technique, SiP2N4NH was obtained by high‐pressure high‐temperature synthesis at 8 GPa and 1100 °C with in situ formed HCl acting as a mineralizer. Its structure was elucidated by a combination of single‐crystal X‐ray diffraction and solid‐state NMR measurements. Moreover, SiP2N4NH was characterized by energy‐dispersive X‐ray spectroscopy and (temperature‐dependent) powder X‐ray diffraction. The highly condensed Si/P/N framework features PN4 tetrahedra as well as the rare motif of SiN6 octahedra, and is discussed in the context of ambient‐pressure motifs competing with close‐packing of nitride anions, representing a missing link in the high‐pressure chemistry of non‐metal nitrides.  相似文献   

15.
《中国化学会会志》2017,64(8):962-968
SiO2 (activated or mesoporous silica)/Mg(magnesiothermic or metal sintering aid)/C(activated or polymeric carbon)/N2 (atmosphere) systems were used in the one‐step synthesis of β‐SiC and β‐Si3N4 whiskers. In this study, a mixture of the active precursors was allowed to react via a self‐sustaining reaction (high‐energy ball milling process). Scanning electron micrographs and X‐ray diffraction (XRD ) analysis showed that the rod‐like SiC whiskers (~800 µm) were synthesized in situ by the direct carbothermal reduction of silicon nitride (or silicon) with activated carbon in N2 (or Ar) atmosphere. The results show that β‐Si3N4 (without β‐SiC ) was fully formed after 5 h of milling with four different morphologies, namely whisker tip (droplet/no droplet) and nonuniform whiskers (short hexagonal/rhombohedral/rod‐like) with a length of 0.1–400 µm. By adding metal sintering aids, the liquid phase Mg–Si–O–N and the rate of carbothermal reduction increased (enhanced densification via particle rearrangement) and their hexagonal whiskers tended to assume a rod‐like shape. The effect of the concentration of CO (reduction of α‐Fe2O3 to Fe by CO ) on the whisker synthesis suggests that, in addition to the concentration of CO , the nature of the family of mesoporous silica/carbon template is an important factor in the synthesis of β‐SiC and β‐Si3N4 whiskers. The possible chemical reactions were investigated by studying the unwanted phases (MgO , Si, SiC , Fe2O3 , Fe3O4 , FeO , Fe, Fe3C , MgCO3 ) of comparable XRD graphs.  相似文献   

16.
Since silicon nitride coatings on silicon dioxide are attractive for the semiconductor and electronics industries, cognizance of their formation kinetics is crucial for optimization of production parameters. In this contribution, the deposition kinetics (rate constant and activation energy) of Si3N4 by the hybrid system chemical vapor infiltration route (HYSY‐CVI), starting from N2:NH3 and SiF4 (produced by the decomposition of Na2SiF6) has been studied. The deposition rate equation for Si3N4 was established from several possible gas‐phase or surface reaction steps involved in the growth of Si3N4 coatings onto silica‐derived rice husk ash (RHA). Based on a judicious analysis of four different models, it was found that Freundlich's adsorption model satisfactorily represents the rate of Si3N4 deposition process onto RHA.  相似文献   

17.
For the first time silicon nitride (Si3N4) nanoparticles was used for preparation electrochemical biosensor. GOx immobilized on the Si3N4 nanoparticles exhibits facile and direct electrochemistry. The surface coverage and heterogeneous electron transfer rate constant (ks) of immobilized GOx were 6.3×10?13 mol cm?2 and 47.4±0.3 s?1. The sensitivity, linear concentration range and detection limit of the biosensor for glucose detection were 38.57 µA mM?1 cm?2, 25 µM to 8 mM and 6.5 µM, respectively. This biosensor also exhibits good stability, reproducibility and long life time. These indicate Si3N4 nanoparticles is good candidate material for construction of third generation biosensor and bioelectronics devices.  相似文献   

18.
Reaction of the bicyclo[1.1.0]tetrasilatetraamide Si4{N(SiMe3)Dipp}4 1 (Dipp=2,6‐diisopropylphenyl) with 5 equiv of the N‐heterocyclic carbene NHCMe4 (1,3,4,5‐tetramethylimidazol‐2‐ylidene) affords a bifunctional carbene‐coordinated four‐membered‐ring compound with a Si=N group and a two‐coordinate silicon atom Si4{N(SiMe3)Dipp}2(NHCMe4)2(NDipp) 2 . When 2 reacts with 0.25 equiv sulfur (S8), two sulfur atoms add to the divalent silicon atom in plane and perpendicular to the plane of the Si4 ring, which confirms the silylone character of the two‐coordinate silicon atom in 2 .  相似文献   

19.
An in situ Raman spectroscopic study was conducted to investigate the pressure-induced phase transformation in the synthetic ZnCr2O4 spinel up to pressures of 70 GPa at room temperature. Results indicate that ZnCr2O4 spinel starts to transform to the CaFe2O4 (or CaTi2O4) structure at 17.5GPa, and such a phase transformation is complete at 35 GPa. The coexistence of two phases over a wide range of pressure implies a sluggish mechanism upon phase transformation. No experimental evidence was observed to support the theoretical simulation with the dissociation of ZnCr2O4 to ZnO and Cr2O3 at 34 GPa. Moreover, enhancement of the intensity of the Raman peak at 642 cm−1 at either elevated pressures or temperatures is most likely caused by an enhanced order-disorder effect. Upon release of pressure, the recovered phase may exhibit an inverse spinel structure, which differs from the initial normal spinel structure.  相似文献   

20.
The chemical and physical properties of phosphorus oxonitride (PON) closely resemble those of silica, to which it is isosteric. A new high‐pressure phase of PON is reported herein. This polymorph, synthesized by using the multianvil technique, crystallizes in the coesite structure. This represents the first occurrence of this very dense network structure outside of SiO2. Phase‐pure coesite PON (coe‐PON) can be synthesized in bulk at pressures above 15 GPa. This compound was thoroughly characterized by means of powder X‐ray diffraction, DFT calculations, and FTIR and MAS NMR spectroscopy, as well as temperature‐dependent diffraction. These results represent a major step towards the exploration of the phase diagram of PON at very high pressures and the possibly synthesis of a stishovite‐type PON containing hexacoordinate phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号