首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of group 4 metal complexes bearing amine‐bis(phenolate) ligands with the amino side‐arm donor: (μ‐O)[Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)2ZrCl]2 ( 1a ), R2N(CH2)2N(CH2‐2‐O‐3‐R1‐5‐R2‐C6H2)2TiCl2 (R = Me, R1, R2 = tBu ( 2a ), R = iPr, R1, R2 = tBu ( 2b ), R = iPr, R1 = tBu, R2 = OMe ( 2c )), and Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)(CH2‐2‐O‐C6H4)TiCl2 ( 2d ) are used in ethylene and propylene homopolymerization, and ethylene/1‐octene copolymerization. All complexes, upon their activation with Al(iBu)3/Ph3CB(C6F5)4, exhibit reasonable catalytic activity for ethylene homo‐ and copolymerization giving linear polyethylene with high to ultra‐high molecular weight (600·× 103–3600·× 103 g/mol). The activity of 1a /Al(iBu)3/Ph3CB(C6F5)4 shows a positive comonomer effect, leading to over 400% increase of the polymer yield, while the addition of 1‐octene causes a slight reduction of the activity of the complexes 2a‐2d . The complexes with the NMe2 donor group ( 2a , 2d , 1a ) display a high ability to incorporate a comonomer (up to 9–22 mol%), and the use of a bulkier donor group, N(iPr)2 ( 2b , 2c ), results in a lower 1‐octene incorporation. All the produced copolymers reveal a broad chemical composition distribution. In addition, the investigated complexes polymerized propylene with the moderate ( 1a , 2a ) to low ( 2b‐2d ) activity, giving polymers with different microstructures, from purely atactic to isotactically enriched (mmmm = 28%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2467–2476  相似文献   

2.
Reaction of CuCl2 · 2H2O, phenanthroline, maleic acid and NaOH in CH3OH/H2O (1:1 v/v) at pH = 7.0 yielded blue {[Cu(phen)]2(C4H2O4)2} · 4.5H2O, which crystallizes in the monoclinic space group C2/c (no. 15) with cell dimensions: a = 18.127(2)Å, b = 12.482(2)Å, c = 14.602(2)Å, β = 103.43(1)°, U = 3213.5(8)Å3, Z = 4. The crystal structure consists of the centrosymmetric dinuclear {[Cu(phen)]2(C4H2O4)2} complex molecules and hydrogen bonded H2O molecules. The Cu atoms are each square‐pyramidally coordinated by two N atoms of one phen ligand and three carboxyl O atoms of two maleato ligands with one carboxyl O atom at the apical position (d(Cu‐N) = 2.008, 2.012Å, equatorial d(Cu‐O) = 1.933, 1.969Å, axial d(Cu‐O) = 2.306Å). Two square‐pyramids are condensed via two apical carboxyl O atoms with a relatively larger Cu···Cu separation of 3.346(1)Å. The dinuclear complex molecules are assembled via the intermolecular π—π stacking interactions into 1D ribbons. Crossover of the resulting ribbons via interribbon π—π stacking interactions forms a 3D network with the tunnels occupied by H2O molecules. The title complex behaves paramagnetically between 5—300 K, following the Curie‐Weiss law χm(T—θ) = 0.435 cm3 · mol—1 · K with θ = 1.59 K.  相似文献   

3.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

4.
Reaction of the cyclodiphosphazane [(OC4H8N)P(μ‐N‐t‐Bu)2P(HN‐t‐Bu)] ( 1 ) with an equimolar quantity of diisopropyl azodicarboxylate afforded the phosphinimine product [(OC4H8N)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NHCO2i‐Pr] ( 6 ) having a PIII‐N‐PV skeleton. Similar products [(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2Et)NHCO2Et] ( 7 ) and [(CO2i‐Pr)HNN(CO2i‐Pr)](t‐BuN=P(μ‐N‐t‐Bu)2POCH2CMe2CH2O[P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NH(CO2i‐Pr)] ( 8 ) were spectroscopically characterized in the reaction of [(t‐BuNH)P‐N‐t‐Bu]2 ( 2 ) and [(t‐BuNH)P(μ‐N‐t‐Bu)2POCH2CMe2CH2OP(μ‐N‐t‐Bu)2P(NH‐t‐Bu)] ( 3 ) with diethyl‐ and diisopropyl azodicarboxylate, respectively. By contrast, the reaction of [(μ‐t‐BuN)P]2[O‐6‐t‐Bu‐4‐Me‐C6H2]2CH2 ( 4 ) and [(C5H10N)P‐μ‐N‐t‐Bu]2 ( 5 ) with diisopropyl azodicarboxylate afforded the mono‐ and bis‐oxidized compounds [(O)P(μ‐N‐t‐Bu)2P][O‐6‐t‐Bu‐4‐Me‐C6H2]2CH2 ( 9 ) and [(C5H10N)(O)P‐μ‐N‐t‐Bu]2 ( 10 ), respectively. Oxidative addition of o‐chloranil to 7 and its DIAD analogue [(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NHCO2i‐Pr] ( 11 ) afforded [(C6Cl4‐1, 2‐O2)(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2R)NHCO2R] [R = Et ( 12 ) and i‐Pr ( 13 )] containing tetra‐ and pentacoordinate PV atoms in the cyclodiphosphazane ring. The structures of 6 , 9 , 12 and 13 have been confirmed by X‐ray structure determination. For comparison, the X‐ray structure of the double cycloaddition product [(C6Cl4‐1, 2‐O2)(t‐BuNH)PN‐t‐Bu]2 ( 14 ), obtained from the reaction of 2 with two mole equivalents of o‐chloranil is also reported.  相似文献   

5.
The title compound, octa‐tert‐butoxybis­[μ3‐2,2′‐(N‐methyl­imino)­diethanolato]­di‐μ‐oxo‐tetratitanium(IV), [Ti2O{(OCH2CH2)2(NCH3)}{(CH3)3CO}4]2 or [Ti4(C5H11NO2)2(C4H9O)8O2], lies about an inversion centre, and displays the less usual zigzag configuration. One O atom of the N‐methyl­diethoxo­amine ligand bridges the symmetry‐related Ti atoms, while the other bridges the two independent Ti atoms, with the N atom binding to give a facial configuration. Four tBuO ligands and a bridging oxide complete the respective five‐ and sixfold coordination of the two Ti atoms. The Ti—O bond lengths range in a self‐consistent fashion from 1.7624 (17) to 2.0878 (18) Å, while the Ti—N bond length is 2.374 (2) Å.  相似文献   

6.
The iminoborane tBuB≡NtBu and the diazomethane tBuCH=N2 give the (2+3) cycloadduct [—HC(tBu)—N=N—N(tBu)=B(tBu)—] in a 1:1 reaction and the seven‐membered ring [—C(tBu)=N—NH—N(tBu)=B(tBu)—N(tBu)=B(tBu)—] in a 2:1 reaction. The (2+3) cycloadduct decomposes above 0 °C to give the seven‐membered ring, N2, and HC(tBu)=N—N=CH(tBu) in the ratio 2:1:1. The borane tBuB≡NtBu and organic azides R″N3 yield the (2+3) cycloadducts [—R″N—N=N—N(tBu)=B(tBu)—] (R″ = Me, Et, Pr, Bu, iBu, sBu, C5H11, c‐C5H9, c‐C6H11, Bzl, EtOOC).  相似文献   

7.
The 1‐azonia‐2‐boratanaphthalenes (NH)(BX)C8H6 can be synthesized from 2‐aminostyrene and the dihaloboranes XBHal2 ( 1 ‐ 4 : X = Cl, Br, iPr, tBu). Further derivatives (NH)(BX)C8H6 are obtained from 1 by replacing Cl by alkoxy or alkyl groups [ 5 ‐ 8 : X = OMe, OtBu, Me, (CH2)3NMe2]. The hydrolysis of 1 gives a mixture of the bis(azoniaboratanaphthyl) oxide [(NH)BC8H6]2O ( 9 ) and the hydroxy derivative (NH)[B(OH)]C8H6 ( 10 ). The diboryl oxide 9 crystallizes in the space group C2/c. The lithiation of 4 at the nitrogen atom gives [NLi(tmen)](BtBu)C8H6 ( 11 ), which upon reaction with the diborane(4) B2Cl2(NMe2)2 yields the 1, 2‐bis(azoniaboratanaphthyl)diborane B2[N(BtBu)C8H6]2(NMe2)2 ( 12 ). The 2‐chloro‐1‐methyl‐4‐phenyl derivative (NMe)(BCl)C8H5Ph ( 13 ) of the parent (NH)(BH)C8H6 can be synthesized from the aminoborane BCl2(NMePh) and phenylethyne. Substitution of Cl in 13 gives the derivatives (NMe)(BX)C8H5Ph [ 14 ‐ 20 : X = N(SiMe3)2, Me, Et, iBu, tBu, CH2SiMe3, Ph] and the reaction of 13 with Li2O affords the bis(azoniaboratanaphthyl) oxide [(NMe)BC8H5Ph]2O ( 21 ). The reaction of 16 or 19 with [(MeCN)3Cr(CO)3] yields the complexes [{(NMe)(BX)C8H5Ph}Cr(CO)3] ( 22 , 23 : X = Et, CH2SiMe3), in which the chromium atom is hexahapto bound to the homoarene part of 16 or 19 , respectively. The complex 23 crystallizes in the space group P21/c. Upon reaction of the phenols para‐C6H4R(OH) with the aryldichloroboranes ArBCl2 and subsequent condensation of the products with phenylethyne, the 1‐oxonia‐2‐boratanaphthalenes O(BAr)C8H4RPh with R in position 6 and Ph in position 4 are formed ( 24 ‐ 26 : Ar = Ph, R = H, Me, OMe; 27 ‐ 29 : Ar = C6F5, R = H, Me, OMe). The azoniaboratanaphthalenes 1 ‐ 23 were characterized by NMR methods.  相似文献   

8.
Podand‐type ligands are an interesting class of acyclic ligands which can form host–guest complexes with many transition metals and can undergo conformational changes. Organic phosphates are components of many biological molecules. A new route for the synthesis of phosphate esters with a retained six‐membered ring has been used to prepare 2,2′‐[benzene‐1,2‐diylbis(oxy)]bis(5,5‐dimethyl‐1,3,2‐dioxaphosphinane) 2,2′‐dioxide, C6H4{O[cyclo‐P(O)OCH2CMe2CH2O]}2 or C16H24O8P2, (1), 2‐[(2′‐hydroxybiphenyl‐2‐yl)oxy]‐5,5‐dimethyl‐1,3,2‐dioxaphosphinane 2‐oxide, [cyclo‐P(O)OCH2CMe2CH2O](2,2′‐OC6H4–C6H4OH), (2), and oxybis(5,5‐dimethyl‐1,3,2‐dioxaphosphinane) 2,2′‐dioxide, O[cyclo‐P(O)OCH2CMe2CH2O]2, (3). Compound (1) is novel, whereas the results for compounds (2) and (3) have been reported previously, but we record here our results for compound (3), which we find are more precise and accurate than those currently reported in the literature. In (1), two cyclo‐P(O)OCH2CMe2CH2O groups are linked through a catechol group. The conformations about the two catechol O atoms are quite different, viz. one C—C—O—P torsion angle is −169.11 (11)° and indicates a trans arrangement, whereas the other C—C—O—P torsion angle is 92.48 (16)°, showing a gauche conformation. Both six‐membered POCCCO rings have good chair‐shape conformations. In both the trans and gauche conformations, the catechol O atoms are in the axial sites and the short P=O bonds are equatorially bound.  相似文献   

9.
The reaction of 2‐methoxybenzyl alcohol with one molar equiv of R2AIX in diethyl ether at 0°C gives [(2‐MeOC6H4CH2‐μ‐O)AlRX]2 ( 1 : R = Et, X = Cl, 2 : R = X = Et). In addition, 2,4‐di‐tert‐butylphenol reacts with iBu3Al affording a four‐coordinated aluminum compound [(μ‐2,4‐tBu2‐C6H4O)Al(iBu)2]2 ( 4 ). Single crystal X‐ray structure analysis of 4 shows a C2h‐symmetry with a planar Al2O2 core. Ring‐opening polymerization (ROP) of caprolactones initiated by 1, 4 and [(μ‐OCH2C6H4OMe)Al(iBu)2]2 ( 3 ) is performed and polyesters with narrow molecular weight distributions were obtained from the “living” ROP of caprolactones. 1H NMR spectroscopic studies of PCL reveal that the initiator of 1 and 3 is through the Al‐OAr function, but the initiator of 4 is through the Al‐ iBu group.  相似文献   

10.
Reaction of (rac)‐3,3′‐bis(methoxymethyl)‐BINOL [H2(CH3OCH2)2BINO] with excess Ti(OiPr)4 and one equivalent of H2O in CH2Cl2 affords a trinuclear titanium(IV) complex [{(CH3OCH2)2BINO}Ti3(μ3‐O)(OiPr)6(μ2‐OiPr)2]. By dissolving it in dichloromethane and hexane and cooling to 0 °C, plate‐like pale yellow single crystals (monoclinic, P21/n, a = 12.605(3), b = 21.994(5), c = 19.090(4) Å, β = 92.764(8)°, V = 5286.2(19) Å3, T = 293(2) K) were obtained. Each oxygen atom at 2 or 2′ position of the (CH3OCH2)2BINO ligand bonds to only one titanium atom. There is no interaction between the third Ti atom and the two oxygen atoms of 3,3′‐bis(methoxymethyl)‐BINOLate.  相似文献   

11.
The title dimer, bis­[1‐cyclo­penta­dienyl‐2‐methyl‐1‐titana‐3‐tri­methylsilyl‐2,3‐dicarba‐closo‐hexaborane(6)], [Ti(C5H5)(C6­H16­B4Si)]2, reveals that the centrosymmetric mol­ecule consists of two bent‐sandwich titanacarboranes bridged by the B—H—Ti bonds. The average bond distances are Ti—B 2.445 (3), Ti—C(cage) 2.334 (2) and Ti—C(Cp) 2.376 (3) Å, and the corresponding bond angles are Cp—Ti—Cp 163.2 (1) and Cp—Ti—Cb (Cb = C2B3 face) 139.9 (1)°; the Ti—H separations are 2.10 (2) and 2.19 (2) Å.  相似文献   

12.
The synthesis and molecular structure of the novel phosphonic acid 4‐tert‐Bu‐2,6‐Mes2‐C6H2P(O)(OH)2 ( 1 ) is reported. Compound 1 crystallizes in form of its monohydrate as a hydrogen‐bonded cluster ( 1·H2O )4 comprizing four phosphonic acid molecules (O···O 2.383(3)‐3.006(4) Å). Additionally, sterically hindered terphenyl‐substituted phosphorus compounds of the type 4‐tert‐Bu‐2,6‐Mes2‐C6H2PR(O)(OH) ( 5 , R = H; 7 , R = O2CC6H4‐3‐Cl; 9 , R = OEt) were prepared, which all show dimeric hydrogen‐bonded structures with O···O distances in the range 2.489(2)–2.519(3) Å. Attempts at oxidizing 5 using H2O2, KMnO4, O3, or Me3NO in order to give 1 failed. Crystallization of 5 in the presence of Me3NO gave the novel hydrogen bonded aggregate 4‐tert‐Bu‐2,6‐Mes2‐C6H2PH(O)(OH)·ONMe3 ( 6 ) showing an O–H···O distance of 2.560(4) Å.  相似文献   

13.
The crystal structures of rare‐earth diaryl‐ or dialkylphosphate derivatives are poorly explored. Crystals of bis[bis(2,6‐diisopropylphenyl)phosphato‐κO ]chloridotetrakis(methanol‐κO )neodymium methanol disolvate, [Nd(C24H34O4P)Cl(CH4O)4]·2CH3OH, (1), and of the lutetium, [Lu(C24H34O4P)Cl(CH4O)4]·2CH3OH, (2), and yttrium, [Y(C24H34O4P)Cl(CH4O)4]·2CH3OH, (3), analogues have been obtained by reactions between lithium bis(2,6‐diisopropylphenyl)phosphate and LnCl3(H2O)6 (in a 2:1 ratio) in methanol. Compounds (1)–(3) crystallize in the C 2/c space group. Their crystal structures are isomorphous. The molecule possesses C 2 symmetry with a twofold crystallographic axis passing through the Ln and Cl atoms. The bis(2,6‐diisopropylphenyl)phosphate ligands all display a κ1O‐monodentate coordination mode. The coordination polyhedron for the metal atom [coordination number (CN) = 7] is a distorted pentagonal bipyramid. Each [Ln{O2P(O‐2,6‐iPr2C6H3)2}2Cl(CH3OH)4] molecular unit exhibits two intramolecular O—H…O hydrogen bonds, forming six‐membered rings, and two intramolecular O—H…Cl interactions, forming four‐membered rings. Intermolecular O—H…O hydrogen bonds connect each unit via four noncoordinating methanol molecules with four other units, forming a two‐dimensional hydrogen‐bond network. Crystals of bis[bis(2,6‐diisopropylphenyl)phosphato‐κO ]tetrakis(methanol‐κO )(nitrato‐κ2O ,O ′)neodymium methanol disolvate, [Nd(C24H34O4P)(NO3)(CH4O)4]·2CH3OH, (4), have been obtained in an analogous manner from NdCl3(H2O)6. Compound (4) also crystalizes in the C 2/c space group. Its crystal structure is similar to those of (1)–(3). The κ2O ,O ′‐bidentate nitrate anion is disordered over a twofold axis, being located nearly on it. Half of the molecule is crystallographically unique (CNNd = 8). Unlike (1)–(3), complex (4) exhibits disorder of all three methanol molecules, one isopropyl group of the phosphate ligand and the NO3 ligand. The structure of (4) displays intra‐ and intermolecular O—H…O hydrogen bonds similar to those in (1)–(3). Compounds (1)–(4) represent the first reported mononuclear bis[bis(diaryl/dialkyl)phosphate] rare‐earth complexes.  相似文献   

14.
Four ruthenium(II) complexes 1—4 [RN=CH‐(2,4‐(tBu)2C6H2O)]RuH(PPh3)2(CO) (R = C6H5, 1; R = 4‐MeC6H4, 2; R = 4‐ClC6H4, 3; R = 4‐BrC6H4, 4) bearing Schiff base ligands were prepared by treating RuHClCO(PPh3)3 with RN=CH‐(2,4‐(tBu)2C6H2OH (L1—L4) in the presence of triethylamine. Their structures were fully characterized by elemental analysis, IR, NMR spectroscopy and X‐ray crystallography. These Ru(II) complexes exhibit high catalytic performance and good functional‐group compatibility in the acceptorless dehydrogenation of secondary alcohols, affording the corresponding ketones in 82%—94% yields.  相似文献   

15.
A new cadmium coordination polymer, [Cd(C5H2N2O4)(H2O)2]n, possesses a one‐dimensional zigzag chain structure built from CdII centers bridged sequentially by pairs of O and N atoms of the 5‐carboxyimidazole‐4‐carboxylate ligand. The CdII center is in a distorted octahedral geometry, being coordinated by two O atoms from two coordinated water mol­ecules [Cd—O = 2.322 (7) and 2.364 (7) Å], and by two N atoms [Cd—N = 2.222 (6) and 2.232 (6) Å] and two carboxyl O atoms [Cd—O = 2.383 (6) and 2.414 (6) Å] from two 5‐carboxyimidazole‐4‐carboxylate ligands.  相似文献   

16.
Synthesis and Crystal Structure of the Nitrido Complexes [(n‐Bu)4N]2[{(L)Cl4Re≡N}2PtCl2] (L = THF und H2O) and [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2—PtCl2] ( 1a ) is obtained by the reaction of [(n‐Bu)4N][ReNCl4] with [PtCl2(C6H5CN)2] in THF/CH2Cl2. It forms red crystals with the composition 1a · 2 CH2Cl2 crystallizing in the tetragonal space group I41/a with a = 3186.7(2); c = 1311.2(1) pm and Z = 8. If the reaction of the educts is carried out without THF, however under exposure to air the compound [(n‐Bu)4N]2[{(H2O)Cl4Re≡N}2PtCl2] ( 1b ) is obtained as red trigonal crystals with the space group R3 and a = 3628.3(3), c = 1231.4(1) pm and Z = 9. In the centrosymmetric complex anions [{(L)Cl4Re≡N}2PtCl2]2— a linear PtCl2moiety is connected in a trans arrangement with two complex fragments [(L)Cl4Re≡N] via asymmetric nitrido bridges Re≡dqN‐Pt. For PtII such results a square‐planar coordination PtCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 169.5 pm and Pt‐N = 188.8 pm ( 1a ), respectively, Re‐N = 165.6 pm and Pt‐N = 194.1 pm ( 1b ). By the reaction of [(n‐Bu)4N][ReNCl4] with PtCl4 in CH2Cl2 platinum is reduced forming the heterometallic ReVI/PtII complex, [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 2012.9(1); b = 1109.0(2); c = 2687.4(4) pm; β = 111.65(1)° and Z = 4. In the central unit ClPt(μ‐Cl)2PtCl of the anionic complex [(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]22— with the symmetry C2 the coordination of the Pt atoms is completed by two nitrido bridges Re≡N‐Pt to nitrido complex fragments [(H2O)Cl4Re≡N] forming a square‐planar arrangement for the Pt atoms. The distances in the linear nitrido bridges are Re‐N = 165.9 pm and Pt‐N = 190.1 pm.  相似文献   

17.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

18.
Two new glutarato bridged coordination polymers {[Mn(phen)]2(C5H6O4)4/2} ( 1 ) and {[Zn(phen)(H2O)](C5H6O4)2/2}· H2O ( 2 ) were structurally characterized on the basis of single crystal X‐ray diffraction data. Crystal data: ( 1 ) P2/c (no. 13), a = 10.340(2)Å, b = 10.525(2)Å, c = 13.891(2)Å, β = 98.31(1)°, U = 1495.9(5)Å3, Z = 2; ( 2 ) P21/n (no. 14), a = 6.738(1)Å, b = 25.636(3)Å, c = 10.374(1)Å, β = 106.13(1)°, U = 1721.4(4)Å3, Z = 4. Complex 1 consists of 1D ribbon‐like {[Mn(phen)]2(C5H6O4)4/2} chains, in which the [Mn(phen)] units were interlinked by glutarato ligands to generate 8‐ and 16‐membered rings. The Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms of three glutarato ligands with d(Mn‐N) = 2.270, 2.276Å, d(Mn‐O) = 2.114—2.283Å. Through the interchain π‐π stacking interactions, the 1D chains are assembled into 2D puckered layers, which are further held together by interlayer π‐π stacking interactions into a 3D network. Complex 2 is built up by 1D {[Zn(phen)(H2O)](C5H6O4)2/2} linear chains and hydrogen bonded H2O molecules. The Zn atoms are coordinated by two N atoms of one phen ligand and three O atoms of one H2O molecule and two glutarato ligands to form slightly elongated trigonal bipyramids with the water O atom and one phen N atom at the apical positions (d(Zn‐N) = 2.101, 2.168Å, d(Zn‐O) = 1.991—2.170Å). The 1D linear chains result from [Zn(phen)(H2O)] units bridged by bis‐monodentate glutarato ligands. The resulting 1D chains are assembled by π‐π stacking interactions into 2D layers, between which the hydrogen bonded H2O molecules are situated.  相似文献   

19.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

20.
Two coordination polymers {[Cd(phen)](C6H8O4)3/3} ( 1 ) and {[Cd(phen)](C7H10O4)3/3} · 2H2O ( 2 ) were structurally characterized by single crystal X‐ray diffraction methods. In 1 (C2/c (no. 15), a = 16.169(2)Å, b = 15.485(2)Å, c = 14.044(2)Å, β = 112.701(8)°, U = 3243.9(7)Å3, Z = 8), the Cd atoms are coordinated by two N atoms of one phen ligand and five O atoms of three adipato ligands to form mono‐capped trigonal prisms with d(Cd‐O) = 2.271‐2.583Å and d(Cd‐N) = 2.309, 2.390Å. The [Cd(phen)] moieties are bridged by adipato ligands to generate {[Cd(phen)](C6H8O4)3/3} chains, which, via interchain π—π stacking interactions, are assembled into layers. Complex 2 (P1¯(no. 2), a = 9.986(1)Å, b = 10.230(3)Å, c = 11.243(1)Å, α = 66.06(1)°, β = 87.20(1)°, γ = 66.71(1)°, U = 955.7(2)Å3, Z = 2) consists of {[Cd(phen)](C7H10O4)3/3} chains and hydrogen bonded H2O molecules. The Cd atoms are pentagonal bipyramidally coordinated by two N atoms of one phen ligand and five O atoms of three pimelato ligands with d(Cd‐O) = 2.213—2.721Å and d(Cd‐N) = 2.329, 2.372Å. Through interchain π—π stacking interactions, the {[Cd(phen)](C7H10O4)3/3} chains resulting from [Cd(phen)] moieties bridged by pimelato ligands are assembled in to layers, between which the hydrogen bonded H2O molecules are sandwiched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号