首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symmetry Relationships among Derivatives of the ReO3 Type The relationships among the derivatives of the ReO3 structure type have been rationalized with a genealogical tree of group‐subgroup relations between the corresponding space groups. The symmetry reductions from the space group Pmm of the ReO3 type result from tilting or distortions of the coordination octahedra, and also when there is an ordered substitution of the Re position by atoms of several elements. One branch of the genealogical tree contains different modifications of WO3. Another branch contains skutterudite (CoAs3) and several hydroxides like In(OH)3 or CaSn(OH)6; in these the octahedra tilting is such that square As or (OH)4 units result. Somewhat different tiltings have been found among CuSn(OH)6 and NaSb(OH)6. A third branch comprehends cubic and rhombohedral structures like NaSbF6, VF3 and LiSbF6 and their derivatives. The rhombohedral structures have octahedra that have been rotated about a threefold rotation axis; in addition, different distortions occur. The genealogical tree shows between which structure types second order phase transitions may be considered and what kinds of twinned crystals can possibly be expected.  相似文献   

2.
The Crystal Structures of PPh4[MCl5(NCMe)] · MeCN (M = Ti, Zr), two Modifications of PPh4[TiCl5(NCMe)] and of cis ‐TiCl4(NCMe)2 · MeCN The title compounds were obtained by reactions of TiCl4 or ZrCl4, respectively, with PPh4Cl and acetonitrile in the presence of S2Cl2. PPh4[TiCl5(NCMe)] · MeCN is unstable and emanates the incorporated acetonitrile. PPh4[TiCl5(NCMe)] forms the two modifications aP114 and mP228, the latter being more stable. The crystal structures were determined by X‐ray diffraction. Triclinic PPh4[TiCl5(NCMe)]‐(aP114) crystallizes in a distorted variety at the tetragonal AsPh4[RuNCl4] type, i. e. with PPh4+ ions that are piled to columns in the c direction; the [TiCl5(NCMe)] ions are tilted vs. this direction and thus cause the symmetry reduction from P4/n to P1. PPh4[TiCl5(NCMe)] · MeCN and PPh4[ZrCl5(NCMe)] · MeCN also have the same packing principle as in AsPh4[RuNCl4] with a symmetry reduction from P4/n to P1121/n and a doubled c axis. Instead, PPh4[TiCl5(NCMe)]‐(mP228) has a packing with (PPh4+)2 pairs. Orthorhombic TiCl4(NCMe)2 · MeCN contains molecules having two acetonitrile ligands attached to the Ti atom in a cis configuration.  相似文献   

3.
Syntheses and Structures of the Lithiumtitanates(III)/(IV) (py)2Li[(py)2Ti(OPh)4] and (py)2Li[(py)Ti(OPh)5] The new lithiumtitanates (py)2Li[(py)2Ti(OPh)4] ( 1 ) and (py)2Li[(py)Ti(OPh)5] ( 2 ) have been obtained from the reaction of titaniumtrichloride (respectively titaniumtetrachloride 2 ) with LiOPh in the presence of the base pyridine (py). The crystal structures of both compounds show that the titanium atoms are in the centres of distorted octahedral coordination figures. In compound 1 , four oxygen and two nitrogen atoms (in cis orientation) are bonded to titanium, whereas in 2 , five oxygen and one nitrogen atom form the coordination polyeder around titanium. In both compounds, the lithium atoms are attached through phenolate bridges to the octahedra. The titanate (py)2Li[(py)2Ti(OPh)4] ( 1 ) has a single absorption band in the visible region of the UV‐spectrum showing a shoulder shifted to the bathochromic region, due to the Jahn‐Teller‐effect for d1‐systems.  相似文献   

4.
The Crystal Packings of (PPh4)2[NiCl4] · 2 MeCN and PPh4[CoCl0.6Br2.4(NCMe)] (PPh4)2[NiCl4] · 2 MeCN was obtained from the reaction of PPh4Cl and NiCl2 in acetonitrile in the presence of S2Cl2, PPh4[Cl2H] being a side product. The product of the reaction of CoS2 with S2Br2 (containing rests of S2Cl2) at 400 °C was treated with PPh4Br in acetonitrile yielding PPh4Br3 and PPh4[CoCl0.6Br2.4(NCMe)]. The crystal structures of the title compounds were determined by X‐ray diffraction. (PPh4)2[NiCl4] · 2 MeCN (space group I 4, a = 1839.3 pm, c = 1375.3 pm) has a crystal packing derived from the BiPh4[ClO4] structure type with a fourfold increased unit cell and one half of the ClO4 positions substituted by pairsof acetonitrile molecules. The crystal structure of PPh4[CoCl0.6Br2.4(NCMe)] (space group I41/a, a = 1804.7 pm, c = 3198.8 pm) is related to the AsPh4[RuNCl4] type with an eightfold increased unit cell. The [CoCl0.6Br2.4(NCMe)] ions are disordered in two orientations and some halogen positions are randomly occupied by Cl and Br atoms. Family trees of group–subgroup relations show the symmetry relations.  相似文献   

5.
Syntheses and Crystal Structures of the Rhenium(VII) Nitride Chlorides ReNCl4 and ReNCl4·H2O Rhenium(VII) nitride chloride, ReNCl4 ( 1 ) is obtained in form of brown needles with metallic luster by the reaction of ReCl5 with Cl3VNCl at 140 °C under vacuum in a sealed glass ampoule. It crystallizes in the tetragonal space group I4 with the lattice parameters a = 826.7(4), c = 405.1(2) pm, and Z = 2. The square pyramidal molecules are connected by asymmetric nitrido bridges to form chains along the crystallographic c axis. The shorter Re‐N distance of 163.0(5) pm corresponds to a triple bond, while the pronounced longer distance of 242.0(5) pm can be interpreted with a weak donor bond. The reaction of ReCl5 with VN at 170 °C under vacuum in a sealed glass ampoule yields red needles of ReNCl4·H2O ( 2 ). It crystallizes in the orthorhombic space group Pnma with a = 1075.4(2), b = 1108.5(2), c = 547.7(5) pm and Z = 4. The Re atoms exhibit a distorted octahedral coordination with the aqua ligand in trans position to the nitrido ligand. The Re‐N triple bond has a bond distance of 166.1(11) pm. The complexes are connected by hydrogen bridges O‐H···N to form chains.  相似文献   

6.
Beyond the Conventional Number of Electrons in M6X12 Type Metal Halide Clusters: W6Cl18, (Me4N)2[W6Cl18], and Cs2[W6Cl18] Black octahedral single crystals of W6Cl18 were obtained by reducing WCl4 with graphite in a silica tube at 600 °C. The single crystal structure refinement (space group R 3¯, Z = 3, a = b = 1498.9(1) pm, c = 845.47(5) pm) yielded the W6Cl18 structure, already reported on the basis of X‐ray powder data. (Me4N)2[W6Cl18] and Cs2[W6Cl18] were obtained from methanolic solutions of W6Cl18 with Me4NCl and CsCl, respectively. The structure of (Me4N)2[W6Cl18] was refined from X‐ray single crystal data (space group P 3¯m1, Z = 1, a = b = 1079.3(1) pm, c = 857.81(7) pm), and the structure of Cs2[W6Cl18] was refined from X‐ray powder data (space group P 3¯, Z = 1, a = b = 932.10(7) pm, c = 853.02(6) pm). The crystal structure of W6Cl18 contains molecular W6Cl18 units arranged as in a cubic closest packing. The structures of (Me4N)2[W6Cl18] and Cs2[W6Cl18] can be considered as derivatives of the W6Cl18 structure in which 2/3 of the W6Cl18 molecules are substituted by Me4N+ ions and Cs+ ions, respectively. The conventional number of 16 electrons/cluster is exceeded in these compounds, with 18 electrons for W6Cl18 and 20 electrons for (Me4N)2[W6Cl18] and Cs2[W6Cl18]. Cs2[W6Cl18] exhibits temperature independent paramagnetic behaviour.  相似文献   

7.
Two Representatives of the α-LiFeO2 Type: LiInO2 and α-LiYbO2 Single crystals of LiInO2 (well ground mixtures of ‘In2O’: KO2: Li2O = 1:1.8:1, Ag-tube, 22d, 520°C); and α-LiYbO2 (Yb2O3:Li2O = 1:1.1, Ni-tube, 30d, 1150°C) were prepared for the first time from mixtures of the binary oxides. The determination of the structure confirmed the α-LiFeO2 type. Both oxides crystallize in the space group I 41/amd (Z = 4); LiInO2: a = 431.2(1) pm c = 934.2(2) pm; c/a = 2.167; 123 Io(hkl), R = 3.6%, Rw = 2.9%. α-LiYbO2:a = 438.7(1) pm c = 1006.7(2) pm; c/a = 2.295, 130 Io(hkl), R = 4.4%, Rw = 3.6%. The Madelung part of lattice energy, MAPLE and characteristics of this kind of structure are discussed.  相似文献   

8.
The reaction of sodium benzoxasulfamate (nbs) with cadmium(II) and mercury(II) sulfate in aqueous solution yield the novel complexes [Cd(nbs)2(H2O)4] (1) and [Hg(nbs)2(H2O)3] ( 2 ), respectively. The complexes were characterized by elemental analyses, IR spectroscopy and X‐ray crystallography. Complex 1 is monomeric and has an octahedral arrangement in which the N‐donor nbs ligands occupy the axial positions, while the water oxygen atoms form the equatorial plane. Complex 2 is polymeric and shows a pentagonal bipyramidal arrangement achieved by the bridging of the HgN2O3 units through the weak interaction of the O atoms of the nitro group. The nbs ligands also occupy the axial positions of the pentagonal bipyramid, whereas three water and two nitro oxygen atoms constitute the pentagonal plane. The crystal structure packing in both crystals is achieved by the intermolecular hydrogen bonds involving water hydrogen atoms, nitro and sulfonyl oxygen atoms.  相似文献   

9.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

10.
LuF[SeO3] and LuCl[SeO3]: Two Non‐Isotypic Halide Oxoselenates(IV) of Lutetium Despite the formal similarity of LuF[SeO3] and LuCl[SeO3] both compounds show significant structural differences due to the different positions of the halide anions (X) within the pentagonal bipyramids [LuO5X2]9−. However, both oxoselenates(IV) have these pentagonal bipyramids as basic modules in common that are connected via O2− edges to chains. LuCl[SeO3] crystallizes orthorhombically in space group Pnma (no. 62; a = 714.63(7), b = 681.76(7) and c = 864.05(9) pm; Z = 4). The structure is isotypic to that one recently presented for ErCl[SeO3]. With a single Cl anion in each an apical and an equatorial position, the chains have to be inclined with an angle of about 54° relative to each other to get connected alternately by common Cl corners and bridging [SeO3]2− pyramids. In contrast to that, LuF[SeO3] which crystallizes triclinically in space group (no. 2; a = 644.85(6), b = 684.41(7), c = 427.98(4) pm, α = 94.063(5), β = 96.484(5) and γ = 91.895(5)°; Z = 2) takes a structural motif already known from CsTmCl2[SeO3]. Owing to the apical position of both halide anions it is now possible to connect the chains directly via discrete Ψ1‐tetrahedral [SeO3]2− groups to layers. The same layers are present in LuF[SeO3] and without the formal alkali‐metal halide unit (CsCl) of the CsTmCl2[SeO3]‐type compounds, the layers can also be connected directly by common F corners to a three‐dimensional array. Torch‐sealed evacuated silica ampoules were used for the synthesis of both lutetium(III) halide oxoselenates(IV). For LuF[SeO3] these vessels have been graphitized before to prevent them from oxosilicate‐producing side‐reactions with the applied fluoride. The synthesis of LuCl[SeO3] required Lu2O3 and SeO2 in a molar ratio of 1 : 6 with a surplus of an eutectic RbCl/LiCl mixture as fluxing agent and an annealing period of five weeks at a temperature of 500 °C, whereas Lu2O3, LuF3 and SeO2 (in a molar ratio of 1 : 1 : 3) with CsBr as flux were converted to LuF[SeO3] at 750 °C within six days.  相似文献   

11.
New Polyiodides of Cesium containing Double and Triple Decker Cations, [Cs(benzo‐18‐crown‐6)2]Ix and [Cs2(benzo‐18‐crown‐6)3](Ix)2 (x = 3, 5) [Cs(b18c6)2]Ix (x = 3 (1) , 5 (3) ) and [Cs2(b18c6)3](Ix)2 (x = 3 (2) , 5 (4) ) (b18c6 = benzo‐18‐crown‐6) have been synthesized by the reaction of benzo‐18‐crown‐6 (C16H24O6), cesium iodide (CsI) and iodine (I2) in acetonitrile ( 1 ), ethanol/dichloromethane ( 2 , 4 ) and 2‐methoxyethanol ( 3 ). Their crystal structures were determined on the basis of single crystal X‐ray data {( 1 ): monoclinic, C2/c, Z = 4, a = 2048.8(5), b = 1329.5(5), c = 1588.7(5) pm, β = 110.23(1)°; ( 2 ): monoclinic, C2/c, Z = 4, a = 2296.0(1), b = 2092.7(1), c = 1373.6(1) pm, β = 100.21(1)°; ( 3 ): monoclinic, P21/n, Z = 4, a = 1586.3(1), b = 1745.5(1), c = 1608.6(1) pm, β = 92.37(1)°; ( 4 ): triclinic, , Z = 2, a = 1241.7(1), b = 1539.8(2), c = 1938.4(2) pm, α = 91.15(1), β = 100.53(1), γ = 95.26(1)°}. As expected, double decker cations centered by Cs atoms, [Cs(b18c6)2]+, are found in the structures of ( 1 ) and ( 3 ). In contrast, the triple decker cation found in ( 2 ) and ( 4 ) is less common. The triiodide anions of ( 1 ) and ( 2 ) can be regarded as normal and the chain‐type pentaiodide anions of ( 3 ) and ( 4 ) fall into the known systematic sequence of these anions. The differences in the connectivity of the crystallographically independent I5? anions in ( 4 ) are surprising with respect to the fact that, so far, independent pentaiodide anions do not show variations in their scheme of connectivity within one crystal structure.  相似文献   

12.
Crystal Structures of the Azido Platinates (AsPh4)2[Pt(N3)4] and (AsPh4)2[Pt(N3)6] The crystal structures of the two homoleptic azido platinates (AsPh4)2[Pt(N3)4] ( 1 ) and (AsPh4)2[Pt(N3)6] ( 2 ) were determined by X‐ray diffraction at single crystals. In 1 the [Pt(N3)4]2– ions are without crystallographic site‐symmetry, and the platinum atoms show a planar surrounding. The [Pt(N3)6]2– ions in 2 are centrosymmetric (Ci) with an octahedral surrounding at the platinum atoms. While 1 is highly explosive, 2 is of significantly greater stability. This behaviour is explained by the packing conditions. 1 : Space group P21/n, Z = 6, lattice dimensions at –80 °C: a = 1045.3(1), b = 1620.2(1), c = 4041.0(3) pm; β = 96.70(1)°; R1 = 0.0654. 2 : Space group P1, Z = 1, lattice dimenstions at –80 °C: a = 1027.6(1), b = 1049.1(2), c = 1249.9(3) pm; α = 88.27(1)°, β = 74.13(1)°, γ = 67.90(1)°; R1 = 0.0417.  相似文献   

13.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

14.
Ordered Structural Variants in Ternary Chalcogenides with Filled β‐Manganese Structure Ternary chalcogenides with filled β;‐manganese structure show the tendency to form differently ordered structural variants. In the case of AM6Te10 (A = Ca, Sn, Pb; M = Al, Ga) and A2M6Ch10 (Na2Ga6Te10, Na2Ga6Se10 and the new compound Na2In6Se10) there are different prerequisites for the formation of ordered variants. High resolution transmission electron microscopy (HRTEM) and electron diffraction performed on AM6Te10 give evidence of different distributions of the cations in the metaprismatic cavities of apparently homogenous samples. Besides completely ordered domains, crystals with partially ordered structures can be observed. In the case of A2M6Ch10, the different structures are exclusively formed by different ordered distributions of M3+ in the tetrahedral cavities. This work focuses on the structural variants which can be synthesized by direct substitution of M3+. The complex structures can be systematized by using crystallographic group‐subgroup relations. Detailed analyses emphasize the close topological relation of these phases to the aristotype (β;‐manganese) and prove that M3+ occupy cavities of the same type (T4 and T5) in all structures.  相似文献   

15.
Pseudo‐Isomerism by Different Jahn‐Teller Ordering: Crystal Structures of the Hemihydrate and the Monohydrate of (pyH)[MnF(H2PO4)(HPO4)] With pyridinium counter cations (pyH+) the MnIII fluoride phosphate anion [MnF(H2PO4)(HPO4)] can be stabilized. It forms a chain structure with Mn3+ ions bridged by a fluoride ion and two bidentate phosphate groups. Under sleightly differing conditions either the hemihydrate (pyH)[MnF(H2PO4)(HPO4)]·0.5H2O ( 1 ) or the monohydrate (pyH)[MnF(H2PO4)(HPO4)]·H2O ( 2 ) is formed. The hemihydrate 1 crystallizes monoclinic in space group P21/n, Z = 8, a = 7.295(1), b = 17.052(2), c = 18.512(3) Å, β = 100.78(1)°, R = 0.033, the monohydrate triclinic in space group P1¯, Z = 2, a = 7.374(1), b = 8.628(1), c = 10.329(1) Å, α = 83.658(8)°, β = 77.833(9)°, γ = 68.544(8)°, R = 0.025. Whereas the topology of the chain anions is identical in both structures, the Jahn‐Teller effect is expressed in different ordering patterns: in 1 antiferrodistortive ordering of [MnF2O4] octahedra is observed, with alternating elongation of an F—Mn—F‐axis or a O—Mn—O‐axis, respectively. This leads to asymmetrical Mn—F—Mn‐bridges. In 2 ferrodistortive ordering is found, with elongation of all octahedra along the F—Mn—F‐axis. Thus, symmetrical bridges are formed with long Mn—F distances. This unusual pseudo‐isomerism is attributed to the differing influence of inter‐chain hydrogen bonds.  相似文献   

16.
Synthesis, Structures, NMR and EPR Investigations of Binuclear Bis(N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenoureato)) Complexes of NiII and CuII The synthesis of binuclear CuII and NiII complexes of the quadridentate ligand N,N,N‴,N‴‐tetraisobutyl‐N′,N″‐isophthaloylbis(selenourea) and their crystal structures are reported. The complexes crystallize monoclinic, P21/c (Z = 2). In the EPR spectra of the binuclear CuII complex exchange‐coupled CuII‐CuII pairs were observed. In addition the signals of a mononuclear CuII species are observed what will be explained with the assumption of an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions. Detailed 13C and 77Se NMR investigations on the ligand and the NiII complex allow an exact assignment of all signals of the heteroatoms.  相似文献   

17.
Li2Sr4Al2Ta2N8O was synthesized from Li3AlN2, Sr(NH2)2, LiN3, and lithium metal as fluxing agent in weld shut tantalum crucibles. Single crystals were obtained as byproduct from reaction with the ampoule material. The crystal structure (P21/n (no. 14), a = 9.4081(19), b = 10.012(2), c = 5.9832(12) Å, β = 93.44(3)°, Z = 2) was solved on the basis of single‐crystal X‐ray diffraction data. Li2Sr4Al2Ta2N8O is built up of vertex sharing AlN4 and TaN4 tetrahedra, forming a BCT‐zeolite type structure with Sr2+ ions and molecular Li2O units incorporated into the voids. Lattice energy calculations (MAPLE) confirmed the electrostatic bonding interactions and the chemical composition.  相似文献   

18.
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043.  相似文献   

19.
Novel Neutral and Cationic Mono‐Aziridine Complexes of the Type [CpMn(CO)2Az], [CpCr(NO)2Az]+, and [(Ph3P)(CO)4ReAz]+ via CO‐, Hydride‐, and Chloride‐Elimination Reactions The monoaziridine complexes 1 — 5 are obtained by three differently induced substitution reactions. The photolytically induced CO substitution reaction of [CpMn(CO)3] with 2, 2‐dimethylaziridine leads to the neutral N‐coordinate aziridine complex [Cp(CO)2Mn{$\overline{N(H)CMe2C}$ H2}] ( 1 ). The protonation of [(Ph3P)(CO)4ReH] with CF3SO3H and consecutive treatment with 2, 2‐dimethylaziridine or 2‐ethylaziridine gives the salt‐like aziridine complexes [(Ph3P)(CO)4Re{$\overline{N(H)CMe2C}$ H2}](CF3SO3) ( 2 ) or [(Ph3P)(CO)4Re{ H2}](CF3SO3) ( 3 ) by hydride elimination reactions. The like‐wise salt‐like complexes [Cp(NO)2Cr{$\overline{N(H)CMe2C}$ H2}](BF4) ( 4 ) and [Cp(NO)2Cr{ H2}](CF3SO3) ( 5 ) are synthesized from [CpCr(NO)2Cl] by chloride elimination with AgX (X = BF4, CF3SO3) in the presence of 2, 2‐dimethylaziridine or 2‐ethylaziridine, respectively. As a result of X‐ray structure analyses, the metal atoms are trigonal pyramidally ( 1, 4, 5 ) or octahedrally ( 2, 3 , cis‐position) configurated; the intact three‐membered rings coordinate through the distorted tetrahedrally configurated N atoms. All compounds 1‐5 are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes; the IR, 1H‐ and 13C{1H}‐NMR, and MS spectra are reported and discussed.  相似文献   

20.
Syntheses and Properties of Di‐tert‐butylphosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 The phosphides [M(PtBu2)2]2 (M = Zn, Hg) and [Cu(PtBu2)]4 are accessible from reaction of LiPtBu2 with ZnI2, HgCl2 and CuCl, respectively. [M(PtBu2)2]2 (M = Zn, Hg) are dimers in the solid state. X‐ray structural analyses of these phosphides reveal that [M(PtBu2)2]2 (M = Zn, Hg) contain four‐membered M2P2‐rings whereas [Cu(PtBu2)]4 features a planar eight‐membered Cu4P4‐ring. Degradation reaction of LiPtBu2(BH3) in the presence of HgCl2 results in the dimeric phosphanylborane BH3 adduct [tBu2PBH2(BH3)]2. X‐ray quality crystals of [tBu2PBH2(BH3)]2 (monoclinic, P21/n) are obtained from a pentane solution at 6 °C. According to the result of the X‐ray structural analysis, the O2‐oxidation product of [Hg(PtBu2)2]2, [Hg{OP(O)(tBu)OPtBu2}(μ‐OPtBu)]2, features in the solid state structure two five‐membered HgP2O2‐rings and a six‐membered Hg2P2O2‐ring. Herein the spiro‐connected Hg atoms are member of one five‐membered and of the six‐membered ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号