首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Hg2)Hg(OH)2(ClO4)2: The First Mixed Valent Mercury Perchlorate Colorless single crystals of (Hg2)Hg(OH)2(ClO4)2 (C2/c, Z = 4, a = 1847.7(5), b = 490.8(1), c = 1086.2(3) pm, β = 93.80(2)°, Rall = 0.0610) were obtained as a side product during the dehydration of Hg2(ClO4)2 · 2H2O. The crystal structure consists of infinite zig‐zag chains {1[(Hg2)1/2(OH)Hg1/2]+}2 which are separated by the ClO4 ions.  相似文献   

2.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

3.
Crystal Structures of Acid Hydrates and Oxonium Salts. XX. Oxonium Tetrafluoroborates H3OBF4, [H5O2]BF4, and [H(CH3OH)2]BF4 The crystal structures of three oxonium tetrafluoroborates were determined. H3OBF4, oxonium tetrafluoroborate proper, is triclinic with space group P1 , Z = 2 and the unit cell dimensions a = 4.758, b = 6.047, c = 6.352 Å and α = 80.40, β = 79.48, γ = 88.25° at ?26°C. Cations H3O+ and anions BF4? are linked by hydrogen bonds O? H…?F into ribbons of condensed rings. In [H5O2]BF4 (diaquohydrogen tetrafluoroborate, monoclinic, P21/c, Z = 4, a = 6.584, b = 9.725, c = 7.084 Å, β = 95.15° at ?100°C) the hydrogen bond in the cation H5O2+ is 2.412 Å short, asymmetric and approximately centered and the linking of cations and anions three-dimensional. In [H(CH3OH)2]BF4 (Bis(methanol)hydrogen tetrafluoroborate, monoclinic, P21/c, Z = 4, a = 5.197, b = 14.458, c = 9.318 Å, β = 94.61° at ?50°C) the cation [H(CH3OH)2]+ is characterized for the first time in a crystal structure with an again very short (2.394 Å), asymmetric and effectively centered hydrogen bond. By further hydrogen bonds cations and anions form only dimers of the formula unit of centrosymmetric cyclic structure.  相似文献   

4.
Production and Decomposition of (NH4)[BF4] and H3N‐BF3 (NH4)[BF4] is produced as single crystals during the reaction of elemental boron and NH4HF2 (B : NH4HF2 = 1 : 2) and NH4F (B : NH4F = 1 : 4), respectively, in sealed copper ampoules at 300 °C. The crystal structure (baryte type, orthorhombic, Pnma, Z = 4) was redetermined at ambient temperature (a = 909.73(18), b = 569.77(10), c = 729.47(11) pm, Rall = 0.0361) and at 140 K (a = 887.3(2), b = 574.59(12), c = 717.10(12) pm, Rall = 0.0321). Isolated (NH4)+ and [BF4] tetrahedra are the important building units. The thermal behaviour of (NH4)[BF4] was investigated under inert (Ar, N2) and reactive conditions (NH3) with the aid of DTA/TG and DSC measurements and with in‐situ X‐ray powder diffraction as well. Finally, (NH4)[BF4] is decomposed yielding NH3 and BF3, BN is not produced under the current conditions. Colourless single crystals of H3N‐BF3 were prepared directly from the components NH3 and BF3. The crystal structure was determined anew at 293 and 170 K (orthorhombic, Pbca, Z = 8, a = 815.12(10), b = 805.91(14), c = 929.03(12) pm, Rall = 0.0367; a = 807.26(13), b = 800.48(10), c = 924.31(11) pm, Rall = 0.0292, T = 170 K). The crystal structure contains isolated molecules H3N‐BF3 in staggered conformation with a B‐N distance of 158 pm. The thermal behaviour of H3N‐BF3 was studied likewise.  相似文献   

5.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

6.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with a 1-alkyne HCCR (R =tBu, CO2Me, CO2Et, or C6H4Me-4), in the presence of Tl[BF4]/[NH4][BF4], under sunlight, affords the corresponding carbyne-fluoro complexes trans-[ReF(CCH2R)(dppe)2][BF4] in an unprecedented single-pot synthesis. Further reaction with [BU4N]OH leads to the vinylidenefluoro compounds trans-[ReF(=C=CHR)(dppe)2] (R = CO2Me, CO2Et, or C6H4Me-4).  相似文献   

7.
Equilibrium constants for the demasking reactions of potassium hydroxotrifluoroborate. (KBF3OH) toward La(III) complexes of EDTA and NTA have been estimated by means of 1H-n.m.r- measurement at 35°C. For the constants defined as KBFLaLm = [L]m[La(BF3OH)n]/[LaLm][BF3OH]n, the results were: for EDTA (m = 1,n = 13) KBFLaL = 102.7, and for NTA (m = 2, n = 13) KBFLaL2 = 1026. These values are much larger than the equilibrium constants for the well known demasking reaction of fluoride ion toward La(III) complexes of EDTA and NTA, which are —12.43 and —14.92, respectively.  相似文献   

8.
The hydrolysis of [Hg{P(CF3)2}2(PMe3)2] yields colourless crystals of [Hg{OP(O)CF3(OH)}2(PMe3)3]. The proposed multistep reaction proceeds via primary hydrolysis of the starting material giving HgO and HP(CF3)2. The latter is directly oxidized by HgO to (CF3)2P(O)OH. The bis(trifluoromethyl)phosphinic acid hydrolyses to CF3P(O)(OH)2 which reacts with [Hg{P(CF3)2}2(PMe3)2] in the presence of PMe3 to the title compound. The crystal structure was determined by X‐ray single‐crystal analysis (triclinic; P1¯; a = 860.7(1), b = 1007.6(2), c = 1625.0(3) pm; α = 96.09(2), β = 101.09(2), γ = 107.79(2)°; Z = 2) and exhibits distorted trigonal bipyramidal mercury complexes which are connected to polymeric chains. The acidic units, {OP(O)CF3(OH)}, are connected via intermolecular hydrogen bridges, forming two individual centrosymmetric eight membered rings with asymmetric hydrogen bridges with O—O distances of 249.4(8) and 250.8(8) pm.  相似文献   

9.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

10.
The reaction of dibenzenediselenide, (SePh)2, with mercury in refluxing xylene gives bis(benzeneselenolato)mercury(II), [Hg(SePh)2], in a good yield. (nBu4N)[Hg(SePh)3] is obtained by the reaction of [Hg(SePh)2] with a solution of [SePh] and (nBu4N)Br in ethanol. The solid state structures of both compounds have been determined by X-ray diffraction. The mercury atom in [Hg(SePh)2] (space group C2, a = 7.428(2), b = 5.670(1), c = 14.796(4) Å, β = 103.60(1)°) is linearly co-ordinated by two selenium atoms (Hg–Se = 2.471(2) Å, Se–Hg–Se = 178.0(3)°). Additional weak interactions between the metal and selenium atoms of neighbouring molecules (Hg…Se = 3.4–3.6 Å) associate the [Hg(SePh)2] units to layers. The crystal structure of (nBu4N)[Hg(SePh)3] (space group P21/c, a = 9.741(1), b = 17.334(1), c = 21.785(1) Å, β = 95.27(5)°) consists of discrete complex anions and (nBu4N)+ counter ions. The coordination geometry of mercury is distorted trigonal-planar with Hg–Se distances ranging between 2.5 and 2.6 Å.  相似文献   

11.
(C2H10N2)[BPO4F2] — Strukturbeziehungen zwischen [BPO4F2]2— und [Si2O6]4— Colourless crystals of (C2H10N2)[BPO4F2] were prepared from mixture of ethylendiamine, H3BO3, BF3 · C2H5NH2, H3PO4 and HCl under mild hydrothermal conditions (220 °C). The crystal structure was determined by single crystal methods (triclinic, P1¯ (no. 2), a = 451.85(5) pm, b = 710.20(8) pm, c = 1210.2(2) pm, α = 86.08(1)°, β = 88.52(2)°, γ = 71.74(1)°, Z = 2) and contains infinite tetrahedral zweier‐single‐chains {[BPO4F2]2—} which are isoelectronic (48e) with the polyanions {[Si2O6]4—} of the pyroxene family.  相似文献   

12.
Single crystals of the hitherto unknown compound Hg2(OH)(NO3)·HgO were obtained unintentionally during hydrothermal phase formation experiments in the system Ag—Hg— As—O. Hg2(OH)(NO3)·HgO (orthorhombic, Pbca, Z = 8, a = 6.4352(8), b = 11.3609(14), c = 15.958(2) Å, 1693 structure factors, 83 parameters, R1[F2 > 2σ(F2)] = 0.0431) adopts a new structure type and is composed of two types of mercury‐oxygen zig‐zag‐chains running perpendicular to each other and of intermediate nitrate groups. One type of chains runs parallel [010] and consists of (Hg—Hg—OH) units with a typical Hg—Hg distance of 2.5143(10) Å for the mercury dumbbell, whereas the other type of chains runs parallel [100] and is made up of (O—Hg—O) units with short Hg—O distances of about 2.02Å. Both types of chains are concatenated by a common O atom with a slightly longer Hg—O distance of 2.25Å. The three‐dimensional assembly is completed by nitrate groups whose O atoms show Hg—O distances > 2.80Å. Weak hydrogen bonding between the OH group and one oxygen atom belonging to the nitrate group stabilizes this arrangement. Hg2(OH)(NO3)·HgO decomposes above 200 °C to HgO.  相似文献   

13.
Synthesis and Crystal Structure of [Cr(NH3)6][Cr(NH3)2F4][BF4]2 The action of ammonium fluoride on a mixture of boron and chromium in a sealed Monel ampoule at 300 °C yields single crystals of [Cr(NH3)6][Cr(NH3)2F4][BF4]2. The crystal structure (tetragonal, P4/mbm, Z = 2, a = 1056.0(1), c = 781.7(1) pm; R1 = 0.0414; wR2 = 0.1087 for 411 reflections with I0 > 2σ(I)) contains [Cr(NH3)6]3+ and [Cr(NH3)2F4] octahedra and twice as many [BF4] tetrahedra that are arranged in a quadrupled super‐structure of the CsCl‐type of structure.  相似文献   

14.
Abstract

[Cp2Fe2(CO)2(μ-CO)(μ-CHP(OPh)3)+][BF? 4] crystallizes in the centrosymmetric monoclinic space group P21/n with a = 12.553(7) Å, b = 16.572(11) Å, c = 15.112(8) Å, β = 100.00(4)°, V = 3096(3) Å3 and D(calcd.) = 1.579 g/cm3 for Z = 4. The structure was refined to R(F) = 5.83% for 1972 reflections above 4σ(F). The cation contains two CpFe(CO) fragments linked via an iron—iron bond (Fe(1)—Fe(2) = 2.544(3)Å), a bridging carbonyl ligand (Fe(1)—C(4) = 1.918(1) Å, Fe(2)—C(4) = 1.946(12)Å) and a bridging CHP(OPh)3 ligand (Fe(1)—C(1) = 1.980(9)Å, Fe(2)—C(1) = 1.989(8)Å). Distances within the μ-CHP(OPh)3 moiety include a rather short carbon—phosphorus bond [C(1)—P(1) = 1.680(10)Å] and P—O bond lengths of 1.550(7)–1.579(6)Å. The crystal is stabilized by a network of F…H—C interactions involving the BF? 4 anion.

[Cp2Fe2(CO)2(μ-CO)(μ-CHPPh3)+][BF? 4], which differs from the previous compound only in having a μ-CHPPh3 (rather than μ-CHP(OPh)3) ligand, crystallizes in the centrosymmetric monoclinic space group P21/c with a = 11.248(5)Å, b = 13.855(5)Å, c = 18.920(7)Å, β = 96.25(3)°, V = 2931(2)Å3 and D(calcd.) = 1.559 g/cm3 for Z = 4. This structure was refined to R(F) = 4.66% for 1985 reflections above 4σ(F). Bond lengths within the dinuclear cation here include Fe(1)-Fe(2) = 2.529(2)Å, Fe(1)—C(3) = 1.904(9) Å and Fe(2)—C(3) = 1.911(8) Å (for the bridging CO ligand) and Fe(1)—C(1P) = 1.995(6) Å and Fe(2)—C(1P) = 1.981(7) Å (for the bridging CHPPh3 ligand). Distances within the μ-CHPPh3 ligand include a longer carbon—phosphorus bond [C(1P)—P(1) = 1.768(6)Å] and P(1)—C(phenyl) = 1.797(7)–1.815(8) Å.  相似文献   

15.
Two Mercuric Ammoniates: [Hg(NH3)2][HgCl3]2 and [Hg(NH3)4](ClO4)2 [Hg(NH3)2][HgCl3]2 ( 1 ) is obtained by saturating an equimolar solution of HgCl2 and NH4Cl with Hg(NH2)Cl at 75 °C. 1 crystallizes in the orthorhombic space group Pmna with a = 591.9(1) pm, b = 800.3(1) pm, c = 1243.3(4) pm, Z = 2. The structure consists of linear cations [Hg(NH3)2]2+ and T‐shaped anions [HgCl3]. The coordination sphere of mercury is ?effectively”? completed to compressed hexagonal bipyramids and distorted octahedra, respectively. Single crystals of [Hg(NH3)4](ClO4)2 ( 2 ) are obtained by passing gaseous ammonia through a solution of mercuric perchlorate, while the solution was cooled to temperatures below 10 °C. 2 crystallizes in the monoclinic space group P21/c with a = 791.52(9) pm, b = 1084.3(2) pm, c = 1566.4(2) pm, β = 120.352(1)°, Z = 4. The structure consists of compressed [Hg(NH3)4]2+ tetrahedra and perchlorate anions. The packing of the heavy atoms Hg and Cl is analogous to the baddeleyite (α‐ZrO2) type of structure.  相似文献   

16.
Alkaline Metal Stannide‐Silicates and ‐Germanates: ‘Double Salts’ with the Zintl Anion [Sn4]4— The crystal structures of the tetrelid tetrelates A12[Sn4]2[GeO4] (A = Rb/Cs: monoclinic, P21/c, a = 1289.1(2) / 1331.72(7), b = 2310.1(4)/ 2393.6(1), c = 1312.6(2)/ 1349.21(7) pm, β = 119.007(3)/ 118.681(1)°, Z = 4, R1 = 0.1049/0.0803) and Cs20[Sn4]2[SiO4]3 (monoclinic, Cc, a = 2331.9(1), b = 1340.1(2), c = 1838.9(2) pm, β= 102.61(3)°, R1 = 0.0763) contain the Zintl anions [Sn4]4— and isolated oxotetrelate ions [MO4]4— (M = Si, Ge). The high temperature form of CsSn crystallizes with the KGe type (cubic, P4¯3n, a = 1444.7(1) pm, R1 = 0.0395).  相似文献   

17.
Crystal Structure of the Basic Dimercury(I) Nitrates. II. Crystal Structure of Hg10(OH)4(NO3)6 . The crystal structure of Hg10(OH)4(NO3)6 has been determined from single crystal x-ray diffraction data. The unit cell is triclinic, space group P1 , a = 999.4(5), b = 909.9(5), c = 765.9(2) pm, α = 85.98(4), β = 78.70(3), γ = 109.83(5)°; Z = 1, R = 6.2%, Rw = 8.2%. Finite cationic chains [(Hg2)5(OH)4(NO3)2]4+ are joined together by weak van der Waals-type interactions between neighbouring Hg and O atoms, thus forming ribbons running along [100]. The coordination sphere of the Hg atoms is completed by further nitrate ions, which lead to the formation of a loose framework. Thereby the metal atoms are not surrounded by simple coordination polyhedra.  相似文献   

18.
Synthesis and Crystal Structure of [Na(12-Crown-4)2]2[Hg(Se4)2] · 1.5 DMF . The title compound has been prepared by the reaction of Na2Se4 with mercury acetate in DMF solution in the presence of 15-crown-5, forming dark red crystal needles. [Na(12-crown-4)2]2[Hg(Se4)2] · 1.5 DMF crystallizes in the space group C2/c with eight formula units per unit cell. The structure was determined with 3 824 observed unique reflections, R = 0.085. Lattice dimensions at - 70°C: a = 2 884(2), b = 1 407.7(7), c = 2 843(2) pm, β = 93.93(5)°. The structure consists of [Na(12-crown-4)2]+ ions with a sandwichlike coordination of the crown ether molecules, and of [Hg(Se4)2]2? ions, in which the mercury atom is coordinated by two tetraselenido ions in a chelating fashion. The [Hg(Se4)2]2? ions are arranged to infinite chains via Se…?Se contacts.  相似文献   

19.
4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2][BF4]2⋅solv ( 1[BF4]2 ⋅solv) and [FeL2][ClO4]2⋅solv ( 1[ClO4]2 ⋅solv; solv=MeNO2, MeCN or Me2CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4]2x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a “reverse-SCO” step in its warming cycle at a scan rate of 5 K min−1. The reverse-SCO is not observed in a slower 1 K min−1 measurement, however, confirming its kinetic nature. The final product [FeL2][BF4]2⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4]2y Me2CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4]2 ⋅0.5 Me2CO is not isostructural with its BF4 congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin.  相似文献   

20.
The trinuclear cationic complex [Ph4C5(AuPPh3)3+[BF4]- (I) obtained by interaction of C5HPh4AuPPh3 or Ph4C5(AuPPh3)2 with [AuPPh3+[BF4]- in THF was studied by X-ray diffraction. In the presence of benzene, triclinic crystals of the solvate [Ph4C5(AuPPh3)3]+[BF4]-· 2 C6H6 are formed, a = 12.845(6), b = 16.042(8), c = 22.642(11) Å, α = 86.62(4), β = 77.51(4), γ = 76.05(4)°, space group P1, Z = 2, 9494 reflections with I > 2σ (λ(Mo-Kα), θ/2θ scan, 2θ < 46°), with absorption correction R = 0.054. The complex represents a diaurated cation of tetraphenylcyclopentadienyl(triphenylphosphine)gold, containing a triangular Au2C fragment (AuAu 2.820(1) Å) which is bonded to the third Au atom (AuAu 3.021(1) Å), coordinated to the cyclopentadienyl ligand by a bond intermediate between η1(σ) and η3 (AuC 2.21(2), 2.60(2) and 2.71(2) Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号