首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X‐ray diffraction methods were used in an investigation of the structural changes in syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay was prepared by the intercalation of sPS polymer into layered montmorillonite. Both X‐ray diffraction data and transmission electron microscopy micrographs of sPS/clay nanocomposites indicated that most of the swellable silicate layers were exfoliated and randomly dispersed in the sPS matrix. The X‐ray diffraction data also showed the presence of polymorphism in the sPS/clay nanocomposites. This polymorphic behavior was strongly dependent on the thermal history of the sPS/clay nanocomposites from the melt and on the content of clay in the sPS/clay nanocomposites. Quenching from the melt induced crystallization into the α‐crystalline form, and the addition of montmorillonite probably increased heterophase nucleation of the α‐crystalline form. The effect of the melt crystallization of sPS and sPS/clay nanocomposites at different temperatures on the crystalline phases was also examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 736–746, 2002  相似文献   

2.
We investigated the effects of montmorillonite (clay) on the crystallization kinetics of syndiotactic polystyrene (sPS) with isothermal differential scanning calorimetry analyses. The clay was dispersed into the sPS matrix via melt blending on a scale of 1–2 nm or up to about 100 nm, depending on the surfactant treatment. For a crystallization temperature of 240 °C, the isothermal crystallization data were fitted well with the Avrami crystallization equation. Crystallization data on the kinetic parameters (i.e., the crystallization rate constant, Avrami exponent, clay content, and clay/surfactant cation‐exchange ratio) were also investigated. Experimental results indicated that the crystallization rate constant of the sPS nanocomposite increased with increasing clay content. The clay played a vital role in facilitating the formation on the thermodynamically more favorable all‐β‐form crystal when the sPS was melt‐crystallized. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2097–2107, 2001  相似文献   

3.
X‐ray diffraction methods and differential scanning calorimetry were used to investigate the crystalline structure and crystallization kinetics of syndiotactic polystyrene (sPS)/clay nanocomposites. X‐ray diffraction data showed the presence of polymorphism in sPS/montmorillonite (MMT) nanocomposites, which was strongly dependent on the processing conditions (premelting temperature and cooling rate) of the sPS/MMT nanocomposites and on the content of MMT in the sPS/MMT nanocomposites. The α‐crystalline form could be transformed into β‐crystalline forms at higher premelting temperatures. The nonisothermal melt‐crystallization kinetics and melting behavior of the sPS/MMT nanocomposites were also studied at various cooling rates. The correlation of the crystallization kinetics, melting behavior, and crystalline structure of the sPS/MMT nanocomposites was examined. The results indicated that the addition of a small amount of MMT to sPS caused a change in the mechanism of nucleation and the crystal growth of the sPS crystallite. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 560–570, 2003  相似文献   

4.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

5.
Monoalkyl- and dialkyl-imidazolium surfactants were used to prepare organically modified montmorillonites with markedly improved thermal stability in comparison with their alkyl-ammonium equivalents (the decomposition temperatures increased by ca. 100 °C). Such an increase in the thermal stability affords the opportunity to form syndiotactic polystyrene (s-PS)/imidazolium-montmorillonite nanocomposites even under static melt-intercalation conditions in the absence of high shear rates or solvents. Upon nanocomposite formation, s-PS exhibited an improvement in the thermal stability in comparison with neat s-PS, and the β-crystal form of s-PS became dominant. This crystallization response agrees with previous studies of s-PS/pyridinium-montmorillonite hybrids and is tentatively attributed to a heterogeneous nucleation action by the inorganic fillers. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3173–3187, 2003  相似文献   

6.
Lamellar morphology and thickness of syndiotactic polystyrene (sPS) samples melt‐crystallized at various temperatures were probed using transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). In addition, the melting temperature and enthalpy of the crystallized samples were characterized with differential scanning calorimetry. Under appropriate thermal treatments, all the samples investigated in this study were crystallized into β′ crystal modification, as revealed by wide‐angle X‐ray diffraction. From the SAXS intensity profiles, a scattering peak (or shoulder) associated with lamellar features as well as the presence of anomalous scattering at the zero‐scattering vector were evidently observed. The peculiar zero‐angle scattering was successfully described by the Debye–Bueche model, and subtraction of its contribution from the raw intensity profiles was carried out to deduce the intensity profile merely associated with the lamellar feature. The lamellar thickness obtained from Lorentz‐corrected intensity profiles in this manner agrees with that measured from the TEM images, provided that the two‐phase model is applied. On the basis of the Gibbs–Thomson equation, the modest estimations of equilibrium melting temperature and the surface free energy of the fold lamellar surface are 292.7 ± 2.7 °C and 20.2 ± 2.6 erg/cm2, respectively, when lamellar thicknesses measured by TEM are applied. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1626–1636, 2002  相似文献   

7.
This work examined the effect of the pre‐melting temperature (Tmax) on the thermal properties and crystalline structure of four miscible syndiotactic polystyrene (sPS)‐based blends containing 80 wt % sPS. The counterparts for sPS included a high‐molecular‐weight atactic polystyrene [aPS(H)], a medium‐molecular‐weight atactic polystyrene [aPS(M)], a low‐molecular‐weight atactic polystyrene [aPS(L)], and a low‐molecular‐weight poly(styrene‐co‐α‐methyl styrene) [P(S‐co‐αMS)]. According to differential scanning calorimetry measurements, upon nonisothermal melt crystallization, the crystallization of sPS shifted to lower temperatures in the blends, and the shift followed this order of counterpart addition: P(S‐co‐αMS) > aPS(L) > aPS(M) > aPS(H). The change in Tmax (from 285 to 315 °C) influenced the crystallization of sPS in the blends to different degrees, depending on the counterpart's molecular weight and cooling rate. The change in Tmax also affected the complex melting behaviors of pure sPS and an sPS/aPS(H) blend, but it affected those of the other blends to a lesser extent. Microscopy investigations demonstrated that changing Tmax slightly affected the blends' crystalline morphology, but it apparently altered that of pure sPS. Furthermore, the X‐ray diffraction results revealed that the α‐form sPS crystal content in the blends generally decreased with an increase in Tmax, and it decreased with a decrease in the cooling rate as well. The blends showed a lower α‐form content than pure sPS; a counterpart of a lower molecular weight more effectively reduced the formation of α‐form crystals. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2798–2810, 2006  相似文献   

8.
The crystallization behavior of miscible syndiotactic polystyrene (sPS) and atactic polystyrene (aPS) blends with different sPS/aPS weight ratios was investigated in supercritical CO2 by using Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Supercritical CO2 and aPS exhibited different effects on the conformational change of sPS and competed with each other. Increasing the content of amorphous aPS in the blends made its effect on the conformational change of sPS gradually surpass that of supercritical CO2. Supercritical CO2 favored the formation of the helical conformation of sPS in lower temperature range and the all trans planar conformation in higher temperature range, instead of forming the latter one only in higher temperature range in ambient atmosphere. However, increasing aPS content in the blends pushed the range for forming the helical conformation to lower temperature and made the all trans planar conformation dominant in aPS/sPS 25/75 blend after treating in supercritical CO2 above 60 °C. The all trans planar zigzag conformation was more favorable than the helical conformation after mixing aPS in sPS in supercritical CO2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1755–1764, 2007  相似文献   

9.
Syndiotactic polystyrene (sPS) and polyamide-6 (PA6) are immiscible and incompatible and have been recognized. In this study, sulfonated syndiotactic polystyrene (SsPS-H) is employed as compatibilizer in the blend of sPS/PA6. During melt blending, the sulfonic acid groups of the SsPS-H can interact strongly with the amine end-groups of PA6 through acid-base interaction. In addition, SsPS-H is miscible with sPS when SsPS-H content is less than 20 wt.%. Therefore, the addition of SsPS-H to sPS/PA6 blends reduces the dispersed phase size and improves the adhesion between the phases. The glass transition temperatures of the PA6 component in the compatibilized blends shift progressively towards higher temperature with the content of SsPS-H-12 increase, indicating enhanced compatibility. On the other hand, the progressive lowering of the melting point and crystallization temperatures of PA6 in the blends with increasing SsPS-H contents compared to the incompatibilized blend, provide some insight into the level of interaction between the PA6 and SsPS-H. The compatibilized blends have significantly higher impact strength than the blends without SsPS-H. The best improvement in the impact strength of the blends was achieved with the content of the SsPS-H (11.9 mol%) about 5 wt.%.  相似文献   

10.
A syndiotactic polystyrene–toluene solution was cast under two different casting conditions to obtain the δ form. A systematic study of its conformational transition, thermal behavior, and structural transformation as functions of the annealing temperature and time was performed. Spectroscopic studies revealed the content of its helical conformations and its retention up to 190 °C. Thermal analyses showed a significant difference in the transformation from the γ form to the α form. The retention of the intermediate emptied clathrate form (mesophase) of the conformational order for a longer duration (from 120 to 180 °C) in a syndiotactic polystyrene membrane cast at room temperature was confirmed by X‐ray diffraction analysis. On the basis of the experimental results in this work, the transition mechanism is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 530–536, 2002; DOI 10.1002/polb.10120  相似文献   

11.
X-ray diffraction and optical microscopy characterization were performed to evaluate the phenomenon of alteration of polymorphism of syndiotactic polystyrene (s-PS) in the presence of other blending miscible polymers: poly(2,6-dimethyl-p-phenylene oxide) (PPO) or atactic polystyrene (a-PS). Both α and β crystal forms were observed in the neat s-PS sample, but only β-form crystal was found in miscible blends of s-PS with a-PS or PPO. The order and neighboring chain segments of neat s-PS are different from those of s-PS/PPO or s-PS/a-PS blends; thus, it is plausible that the greater randomness in the melt state of s-PS/a-PS or s-PS/PPO blends might be unfavorable for formation of α-form crystals from melts. The final spherulitic morphology the s-PS/a-PS or s-PS/PPO blends suggests that the amorphous-state miscibility of does not change much the spherulitic structure of s-PS. The radial growth rate is, in general, depressed with the presence of blending miscible polymers in s-PS of equal Tg or PPO of higher Tg. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2725–2735, 1998  相似文献   

12.
Three polystyrene (PS)/clay hybrid systems have been prepared via in situ polymerization of styrene in the presence of unmodified sodium montmorillonite (Na‐MMT) clay, MMT modified with zwitterionic cationic surfactant octadecyldimethyl betaine (C18DMB) and MMT modified with polymerizable cationic surfactant vinylbenzyldimethyldodecylammonium chloride (VDAC). X‐ray diffraction and TEM were used to probe mineral layer organization and to expose the morphology of these systems. The PS/Na‐MMT composite was found to exhibit a conventional composite structure consisting of unintercalated micro and nanoclay particles homogeneously dispersed in the PS matrix. The PS/C18DMB‐MMT system exhibited an intercalated layered silicate nanocomposite structure consisting of intercalated tactoids dispersed in the PS matrix. Finally, the PS/VDAC‐MMT system exhibited features of both intercalated and exfoliated nanocomposites. Systematic statistical analysis of aggregate orientation, characteristic width, length, aspect ratio, and number of layers using multiple TEM micrographs enabled the development of representative morphological models for each of the nanocomposite structures. Oxygen barrier properties of all three PS/clay hybrid systems were measured as a function of mineral composition and analyzed in terms of traditional Nielsen and Cussler approaches. A modification of the Nielsen model has been proposed, which considers the effect of layer aggregation (layer stacking) on gas barrier. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1733–1753, 2007  相似文献   

13.
Syndiotactic polystyrene (sPS) samples melt‐crystallized into neat α″‐ hexagonal and β′‐orthorhombic modifications were prepared at various temperatures thoroughly for extensive morphological studies. The lamellar morphologies of the as‐prepared sPS samples were investigated with small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). For SAXS measured at 25°C, a barely observed scattering hump was detected for β′‐form sPS, whereas no discernible scattering feature was found for α″‐form sPS because of a small difference in the electron density between the crystalline and amorphous phases. For increased scattering contrast and strength, SAXS was carried out at 150°C so that more reliable morphological parameters would be obtained. In addition to the enhanced scattering peak relevant to the lamellar features, strong diffuse scattering near the beam stop was observed for both α″‐ and β′‐form sPS samples. The contribution of the diffuse scattering at low q regions (where q is the scattering vector) was rather prominent, obscuring the precise position of the scattering peak. On the basis of the Debye–Bueche theory, the strength and inhomogeneity length were derived to render the diffuse scattering. After the subtraction of the diffuse scattering from the observed intensities, scattering intensities exclusively associated with the lamellar features were obtained. Lamellar thicknesses were further derived from the one‐dimensional correlation function of the modified intensities, and a good agreement was reached in comparison with TEM results. From exhaustive TEM observations on the RuO4‐stained samples, long and parallel lamellae were readily observed in β′‐form sPS. However, relatively irregular packing of lamellar stacks with short lateral dimensions was detected in the as‐prepared α″‐form sPS, leading to the absence of spherulitic birefringence under polarized optical microscopy. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2457–2469, 2003  相似文献   

14.
Syndiotactic polystyrene (sPS) is a new semi-crystalline thermoplastic which is believed to fill the price-performance gap between engineering and commodity plastics. In order to reduce the high processing temperature of sPS (>290°C), an epoxy-amine model system was used as a reactive solvent. Such a processing aid can be used to achieve a 50 to 500 fold lowering of the melt viscosity. When initially homogeneous solutions of sPS in a stoechiometric epoxy-amine mixture are thermally cured, Reaction Induced Phase Separation (RIPS) takes place, leading to phase separated thermoplastic-thermoset polymer blends. We focus our study on low (wt% sPS < 20%) and high concentration blends (wt% sPS > 60%) prepared by two processing techniques (mechanical stirring in a laboratory reactor or internal mixer/ reactive extrusion respectively). These blends have different potential interests. Low concentration blends (sPS domains in an epoxy-amine matrix) are prepared to create new, tunable blend morphologies by choosing the nature of the phase separation process, i.e. either crystallisation followed by polymerization or polymerization followed crystallisation. High concentration blends (sPS matrix containing dispersed epoxy-amine particles after RIPS) are prepared to facilitate the extrusion of sPS. In this case, the epoxy amine model system served as a reactive solvent. The time to the onset of RIPS is in the order of 7-9 min for low concentration blends, while it increases to 20-45 min for high concentration samples, as the reaction rates are substantially slowed down due to lower epoxy and amine concentrations. During the curing reaction the melting temperature of sPS in the reactive solvent mixture evolves back from a depressed value to the level of pure sPS. This indicates a change in the composition of the sPS phase, caused by (complete) phase separation upon reaction. We conclude that our epoxy amine system is suited for reactive processing of sPS, where final properties depend strongly on composition and processing conditions.  相似文献   

15.
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175  相似文献   

16.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

17.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   

18.
In this study, a novel stepwise extraction method has been examined. The guest molecules housed between the helices of the clathrate δ form of syndiotactic polystyrene can be removed completely with this method. A systematic study of the preparation of a solvent‐free mesophase (emptied clathrate) membrane, its helical and residual solvent contents, and its structural transformations has been performed. In this first attempt, an enhancement in the TTGG helical content has been observed in the extracted membrane, and a conceptual mechanism is proposed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 269–273, 2003  相似文献   

19.
The complex polymorphic behavior of syndiotactic polystyrene (s-PS) in melt-crystallized samples is altered by blending with poly (2,6-dimethyl-1,4-diphenylene oxide) (PPO). In particular, to render the beta form in these blends, starting with samples containing the α or γ froms, requires much lower temperatures and shorter melting times than for pure s-PS. On the basis of the results, it is suggested that this phenomenon is due to more rapid loss of the memory of the α form, for the same temperature and time, in the melt in the presence of PPO molecules.  相似文献   

20.
Fourier transform infrared (FTIR) spectra of syndiotactic polystyrene (s-PS) semicrystalline samples have been examined by using the spectral subtraction approach. For the crystalline forms including trans-planar chains (trigonal α and orthorhombic β) a number of conformational and structural order effects, not previously described in the literature, have been identified. A method based on the results of the spectral subtraction analysis has been developed for the determination of the crystallinity degree and compared with the standard method based on the wide-angle X-ray diffraction patterns. The spectral subtraction analysis on FTIR spectra allows also an easy evaluation of the amount of α and β crystalline phases (often simultaneously present in melt-crystallized samples) although both contain chains in a same conformation. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1055–1066, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号