首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel high energetic material, 1‐amino‐1‐methylamino‐2,2‐dinitroethylene (AMFOX‐7), was synthesized through 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) reacting with methylamine in N‐methyl pyrrolidone (NMP) at 80.0°C, and its structure was determined by single crystal X‐ray diffraction. The crystal is monoclinic, space group P21/m with crystal parameters of a=6.361(3) Å, b=7.462(4) Å, c=6.788(3) Å, β=107.367(9)°, V=307.5(3) Å3, Z=2, µ=0.160 mm?1, F(000)=168, Dc=1.751 g·cm?3, R1=0.0463 and wR2=0.1102. Thermal decomposition of AMFOX‐7 was studied, and the enthalpy, apparent activation energy and pre‐exponential constant of the exothermic decomposition reaction are 303.0 kJ·mol?1, 230.7 kJ·mol?1 and 1021.03 s?1, respectively. The critical temperature of thermal explosion is 245.3°C. AMFOX‐7 has higher thermal stability than FOX‐7.  相似文献   

2.
Guanidimium‐4,4‐azo‐1‐hydro‐1,2,4‐triazol‐5‐one (GZTO·H2O) was synthesized from 4‐amino‐1,2,4‐triazol‐5‐one as a starting material by two‐step including oxidation coupling using acid KMnO4 and reaction with (NH2)2CNH·HNO3 (GN) in KOH solution. The single crystal of the title compound was obtained by slow evaporation method at room temperature, and its structure was firstly determined with X‐ray single‐crystal diffractometer. It is a orthorhombic crystal, space group Pbca with cell dimensions of a=1.0459(2) nm, b=1.3584(3) nm, c=1.6103(3) nm, α=90.00(10)°, β=90.00(11)°, γ=90.00(11)°, V=2.2878(8) nm3, Z=8, Dc=1.587 g·cm−3, F(000)=1136, µ=0.132 mm−1, R1=0.0455, wR2=0.1397. The thermal behavior of GZTO·H2O was studied under a non‐isothermal condition by DSC‐TGA method, and its thermal decomposition process can be divided into three stages, and the first stage is an intense exothermic decomposition process. The second stage and the third stage are slow exothermic decomposition processes. The critical temperature of thermal explosion is 237.74°C.  相似文献   

3.
4,4′‐Bis(3‐N‐methoxyformyl thioureido)‐diphenyloxide was prepared via reaction of 4,4′‐diaminodiphenyl alter with potassium sulfocyanate and ethyl chloroacetate in ethyl acetate. The single crystal of the title compound was cultured by slow evaporation method at room temperature. The crystal structure was determined with X‐ray diffractometer. It is a monoclinic crystal, space group C2/c with a=0.95911(19) nm, b=0.75922(15) nm, c=2.7161(5) nm, α=90°, β=97.675 (3) °, γ=90°, V=1.9601(7) nm3, Z=4, Dc=1.472 g·cm−3, F(000) =904, µ=0.311 cm−1, R1=0.0367, wR2=0.1408. The specific heat capacity of the title compound was determined with continuous Cp mode of mircocalorimeter. The thermal behavior of the title compound was studied under a non‐isothermal condition by DSC method.  相似文献   

4.
Introduction Molecular recognition and molecular self-assemblycarried out by cooperation of the weak interactions(electrostatic reaction, hydrogen bonds, van der Waalsforce, short-range repulsive force, etc) are the commonphenomena in nature. In recent years, the research onsupramolecular complex has been a crossing focus ofseveral subjects such as chemistry, physics, biology,material and information.1 Supramolecular complex hasa wide application foreground in material, catalysis,conductor,…  相似文献   

5.
New Hexachalcogeno‐Hypodiphosphates of Alkaline‐Earth Metals and Europium Six hexathio‐ and hexaseleno‐hypodiphosphates respectively with the formula M2P2X6 (M = Ca, Sr, Eu, Ba; X = S, Se) were prepared by heating the elements at 750 °C (60 h) and their crystal structures were determined by single crystal X‐ray methods. Eu2P2S6 (a = 9.396(2), b = 7.531(2), c = 6.593(2) Å, β = 91.48(2) °), Ba2P2S6 (a = 9.966(1), b = 7.580(2), c = 6.737(2) Å, β = 91.17(3) °), Ca2P2Se6 (a = 9.664(2), b = 7.519(2), c = 6.859(1) Å, β = 92.02(3) °), Sr2P2Se6 (a = 9.844(2), b = 7.788(2), c = 6.963(1) Å, β = 91.50(3) °), Eu2P2Se6 (a = 9.779(2), b = 7.793(2), c = 6.957(1) Å, β = 91.29(3) °), and Ba2P2Se6 (a = 10.355(2), b = 7.862(2), c = 7.046(1) Å, β = 90.83(3) °) are isotypic and crystallize in the high temperature form of Sn2P2S6 (P21/n; Z = 2). The discrete ethanlike (P2X6)4— anions in staggered conformation are linked via X—M—X bonds to a three‐dimensional structure and in the course of this Ca2+, Sr2+, and Eu2+ are coordinated by 8 and Ba2+ by 8+1 S and Se atoms respectively. Susceptibility measurements of Eu2P2S6 from 2 K to room temperature show Curie‐Weiss behavior with an experimental magnetic moment of 7.43(2) μB/Eu. No magnetic ordering was observed down to 2 K. A 151Eu Mössbauer spectrum at 77 K shows only one signal at an isomer shift of δ = —12.6(1) mm/s. The europium atoms in Eu2P2S6 are therefore in a stable divalent oxidation state.  相似文献   

6.
The reaction of Se4[Mo2O2Cl8] with Se4[MCl6] (M = Zr, Hf) or of Se, SeCl4, MoOCl4, and MCl4 (M = Zr, Hf) at 120 °C in sealed evacuated glass ampoules gives (Se4)2[Mo2O2Cl8][MCl6] (M = Zr, Hf) in the form of dark‐green, air sensitive crystals in quantitative yield. The crystal structure analyses of both isotypic compounds (monoclinic, P21/c, Z = 2, a = 1336(2), b = 716(1), c = 1518(4) pm, β = 106.0(2)° for M = Zr; a = 1334.1(8), b = 715.03(9), c = 1518.2(3) pm, β = 106.00(2)° for M = Hf) show the presence of square‐planar Se42+, of dinuclear [Mo2O2Cl8]2—, and of almost regular octahedral [MCl6]2— ions. X‐ray crystallographic investigations on (Se4)2[Mo2O2Cl8][ZrCl6] give no hint for solid state phase transitions between —160 and 200 °C. This is in contrast to the related compounds Se4[Mo2O2Cl8] and Se4[ZrCl6] which both undergo phase transitions accompanied by reorientation of the cations and anions. (Se4)2[Mo2O2Cl8][ZrCl6] is paramagnetic and obeys the Curie‐Weiss law with a Weiss constant of —4(7) K indicating only weak interaction between the paramagnetic centres. The magnetic moment of 1.7(1) μB is consistent with the presence of MoV (d1 configuration) and supports the ionic formula.  相似文献   

7.
Cobalt(III) complex [CoL3], where L=(5‐bromo‐2‐hydroxybenzyl‐2‐furylmethyl)imine, has been synthesized by reacting cobalt(II) nitrate with L. The complex has been characterized by elemental analysis and FT‐IR spectroscopy. The crystal structure of [CoL3] was determined by X‐ray crystallography from single crystal data. It crystallizes in the triclinic space group$ P {\bar 1} $ with unit cell parameters:a=9.6644(10) Å,b=11.5657(11) Å,c=16.5809(17) Å,α=102.833(4)°,β=102.999(3)°,γ=105.480(3)°,V=1659.9(3) Å3andZ=2. Thermal decomposition of [CoL3] was studied by thermogravimetry in order to evaluate its thermal stability and thermal decomposition pathways.  相似文献   

8.
Syntheses and X‐ray structural characterizations of two new Cu(II) complexes Cu(tfbz)2(Htfbz)2(phen) ( 1 ) (Htfbz=2,4,5‐trifluorobenzoic acid, phen=1,10‐phenanthroline) and [Cu(pfbz)2(phen)]2(Hpfbz)2 ( 2 ) (Hpfbz=pentafluorobenzoic acid) are reported. The first complex crystallizes in the monoclinic space group C2/c with the crystal cell parameters a=1.9903(4) nm, b=1.3688(3) nm, c=1.3623(3) nm, β=97.90(3)°, V=3.6762(13) nm3 and Z=4. The second complex crystallizes in the triclinic space group P‐1 with the crystal cell parameters a=1.7965(4) Å, b=1.9236(2) Å, c=2.0916(2) Å, α=110.156(2) °, β=105.040(3) °, γ=98.123(3) °, V=6.3372(17) nm3 and Z=4. The crystallographic analyses revealed that F···H–C hydrogen bonds in both complexes lead to formation of infinite three‐dimensional supramolecular networks. A large number of F···F interactions in complex 2 ensure the stability of intricate crystal structure.  相似文献   

9.
The reaction of palladium(II) bromide or palladium(II) iodide with the respective gallium(III) halogenide in the presence of aromatic solvents leads to the formation of palladium(II) tetrabromo— and tetraiodogallate. The compounds are isostructural {monoclinic, C2/m, Pd[GaBr4]2: a = 1267(2), b = 808(1), c = 722(1) pm, β = 94.5(1)°; Pd[GaI4]2: a = 1363(1), b = 849.9(4), c = 756.6(7) pm, β = 95.38(3)°}. The structures contain mononuclear complexes Pd[GaX4]2, where X = Br ( 1 ), I ( 2 ). The crystal structures of 1 and 2 were determined by single‐crystal X‐ray diffraction. Crystals of both compounds turned out to be similarly twinned.  相似文献   

10.
Abstract

X-ray crystallographic investigation of the tertiary structure of simple 1-methylimidazolium (1-Meim) salts reveals that cation—cation face-to-face π—stacking with interplanar separations in the range typically seen for molecule—molecule and molecule—cation interactions are possible. Two salts are reported. 1-Meim-CF3SO3, 1, exists as a centrosymmetric dimer with an interplanar separation of only 3.16 Å. The two imidazolium rings are slipped to the extent that the interaction can be regarded as a manifestation of C—H…C—H dipole interactions. 1-Meim-NO3 exists as a one-dimensional (1-D) polymer with interplanar separations of 3.65 Å. The cations are not as severely slipped as for 1 and the interactions can be regarded as the result of cation—cation and anion—anion complementary electrostatics. Semi-empirical calculations are used to rationalize the π-π stacking in both 1 and 2. Crystal data: 1-Meim-CF3SO3, 1, triclinic, P1, a=6.416(3) Å, b=7.617(4) Å, c=9.569(4) Å, α=85.36(4)°, β=86.08(3)°, γ=85.18(4)°, V=463.6(4) Å,3 Z=2, Dc =1.66 g cm?3, μ=3.7 cm?1, T=17°C, R=0.054 and R w=0.076 for 1241 reflections; 1-Meim-NO3, 2, monoclinic, P21/c, a=9.009(7) Å, b=9.988(6) Å, c=7.308(5) Å, β=94.93(6)°, V=655.2(8) Å,3 Z=4, Dc =1.47 g cm?3, μ=1.2 cm?1, T=17°C, R=0.060 and R w=0.068 for 483 reflections.  相似文献   

11.
La2O(CN2)2 was synthesized from a 1:1:2 molar reaction mixture of LaCl3, LaOCl, and Li2(CN2) at 650 °C. Well developed single crystals were grown from a LiCl‐KCl flux. The crystal structure was refined as monoclinic (space group C2/c, Z = 2, a = 13.530(2) Å, b = 6.250(1) Å, c = 6.1017(9) Å, β = 104.81(2)°) from single crystal X‐ray diffraction data. The La3+ and (CN2)2— ions in the crystal structure of La2O(CN2)2 can be compared to Fe3+ and S22— ions in the cubic pyrite structure, being arranged like in a distorted NaCl type structure with their centers of gravity. In addition, the O2— ions in La2O(CN2)2 are occupying 1/4 of the tetrahedral voids formed by the arrangement of metal ions.  相似文献   

12.
IntroductionAvarietyoffunctionalcoordinationpolymersweresyn thesizedinrecentyearsfortheirdiversifiedstructures1andconsiderableapplicationsinthefieldssuchascatalysis ,2 non linearoptics,3 molecularmagneticmaterias4 andelectriccon ductors .5Frameworksofcoordin…  相似文献   

13.
Crystal Structures of Hexachalcogeno‐Hypodiphosphates of Magnesium and Zinc Five chalcogeno‐hypodiphosphates were synthesized and investigated by single crystal X‐ray methods. Mg2P2S6 (C2/m; a = 6.085(1), b = 10.560(2), c = 6.835(1)Å, β = 106.97(3)°; Z = 2) crystallizes with the Fe2P2S6 type structure, whereas Mg2P2Se6 (a = 6.404(1), c = 20.194(4)Å) and Zn2P2Se6 (a = 6.290(3), c = 19.93(2)Å) build up the Fe2P2Se6 type (R3; Z = 3). The structures are characterized by closest packings of sulfur (selenium) with Mg2+ (Zn2+) ions and P2 pairs in half the octahedra — analogous to the CdCl2 and CdI2 type, respectively. In Mg2P2S6 half the Mg2+ ions can be substituted by Ag+ ions resulting in Ag2MgP2S6 (C2/n; a = 6.364(1), b = 10.975(2), c = 13.999(3)Å, β = 108.29(3)°; Z = 4). In this compound the Ag+ ions are disordered and located in the octahedra originally occupied by Mg2+ ions. In Mg2P2Se6 an analogous substitution by K+ ions leads to the compound K2MgP2Se6 (P21/n; a = 6.546(1), b = 12.724(3), c = 7.599(2)Å, β = 103.02(3)°; Z = 2) with K2FeP2S6 type structure. The structure is characterized by columns of alternating face‐sharing Se octahedra (centered by Mg) and trigonal antiprisms (centered by P2 pairs) along [100]. The columns are interconnected by inserted K+ ions.  相似文献   

14.
利用水热合成技术成功制备出一种新型多钒硼氧化合物, 用X射线单晶衍射分析技术对其晶体结构和分子结构进行了确定。结果表明在该化合物中多钒硼氧阴离子具有一个新颖的三明治结构。上下两个结构单元都是由六个VO5四角锥交替地通过顺式和反式共边的方式连接起来构成的一个钒氧三角形结构。中间的结构单元是由BO3平面三角形和BO4四面体以共角的方式相互连接形成的一个折叠型的B18O36(OH)6环。三明治结构中层与层之间通过桥氧相连。一个水分子处于它的核心位置上,与每个VO5四角锥中的钒原子都保持几乎相等的距离。该化合物及其晶体中存在着丰富的化学结构和成键信息,同时也有作为氧化还原反应催化剂的潜能。  相似文献   

15.
The six organotin complexes dibutyltin(IV) bis(heteroaromatic carboxylate) were synthesized by the reaction of (n‐Bu)2SnO with heteroaromatic carboxylic acid in 1:2 molar ratio. These complexes have been characterized by elemental analysis, IR, 1H, 13C and 119Sn NMR. The crystal structure of dibutyltin(IV) bis(2‐thiazolylcarboxylate) was determined by X‐ray single crystal diffraction. This compound is a weakly bridged dimer through weak interaction Sn···O between molecules. The tin atoms took six‐coordinate skew‐trapezoidal bipyramidal geometry. The crystal of complex 3 belongs to monoclinic symmetry with space group P21/c, a=1.863(2) nm, b=2.220(3) nm, c=1.0395(10) nm, β=90.275(16)°, Z=8, V=4.292(8) nm3, Dc=1.514 Mg/m3, μ=1.406 mm‐1, F(000)=1968, S=0.999, R=0.0549, wR=0.1011.  相似文献   

16.
李红喜  张勇  任志刚  程美令  王静  郎建平 《中国化学》2005,23(11):1499-1502
Reactions of SmI2 in THF with ArSSAr produced two binuclear samarium thiolate complexes [(THF)3I2- Sm(μ-SAr)]2 [Ar=Ph (1), 4-Me2NC6H4 (2)] in high yields. The structure of 2 was characterized by single crystal X-ray crystallography. The crystal of 2 belongs to the triclinic system with space group P 1 and a=0.95705(13) nm, b= 1.22287(14) nm, c= 1.26450(14) nm, a=64.194(11)°, B=78.491(13)°, y=76.176(12)°, V= 1.2860(3) nm^3, Z= 1,μ=4.783 mm^-1, Dc= 1.964 Mg/m^3, M= 1521.19, S= 1.046, R1=0.0358, wR2=0.0910. X-ray analysis revealed that 2 is a thiolate-bridged dimer in which each Sm atom adopts a distorted pentagonal bipyramidal coordi- nation geometry.  相似文献   

17.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

18.
Introduction As an important type of fungicides, triazole compounds are highly efficient, low poisonous and inward absorbent.1-3 At present, the studies on triazole derivatives are mainly concentrated on compounds with triazole as the only active group. The report of triazole compounds that contain both triazole group and other active group in a single molecule has rarely been found. Dialkyl-substituted dithiocarbamate salts have also shown interesting biological effects.4 N,N-Dialkyldithio-…  相似文献   

19.
许良忠  李伟华  司国栋  李凯  杨双花 《中国化学》2005,23(10):1449-1452
The two compounds 1-[1-(2',4'-dichlorobenzoyl)-1-(3-phenylthiazoidin-2-ylidene)methyl]-1,2,4-triazole (3a) and 1-[1-(4'-fluorobenzoyl)-1-(3-phenylthiazolidin-2-ylidene)methyl]-1,2,4-triazole (3b) were prepared by reaction of phenyl isothiocyanate, 1,2-dibromoethane with a-(1,2,4-triazol-1-yl)-substituted-acetylbenzene. Their structures were identified by means of elemental analysis, IR, and ^1H NMR spectra. The single crystal of compound 3b was also obtained. It crystallizes in triclinic system with space group P1 and a=0.9390(2) nm, b=0.9661(2) nm, c= 1.0929(2) nm, α=111.53(3)°, β= 100.46(3)°, γ= 102.08(3)°, Z=2, V=0.8647(3) nm^3, Dc= 1.407 g/cm^3,μ =0.213 mm^-1, F(000)=380, final R1=0.073. There is obvious potentially weak C-H…Y (Y=N, F, O) intermolecular interaction between the molecules in the crystal lattice, which stabilizes the crystal structure. The result of the biological test showed that the two compounds have certain fungicidal activities.  相似文献   

20.
Bright orange (CuBr)3P4Se4 is obtained from the reaction of CuBr, P, and Se in stoichiometric amounts (CuBr : P : Se = 3 : 4 : 4). The composition and the crystal structure of the compound were determined from single crystal X‐ray diffraction data. Lattice constants are a = 33.627(2) Å, b = 6.402(1) Å, c = 19.059(1) Å, β = 90.19(3) °, V = 4103.2(3) Å3, and Z = 12. The compound crystallizes in a structure that is related to (CuI)3P4Se4. Cages of β‐P4Se4 are stacked along the b‐axis and are separated by columns of copper(I) bromide. However, the coordination of the β‐P4Se4 cage molecules to the copper atoms in the CuBr columns in (CuBr)3P4Se4 is quite different from (CuI)3P4Se4. The monoclinic compound (space group: P21, no. 4) has an almost orthorhombic metric in combination with a threefold superstructure in [100]. Structural aspects of (CuBr)3P4Se4 are discussed with respect to the heavier homologue (CuI)3P4Se4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号