首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   

2.
This reactive molecular dynamics study explores the salt concentration dependence of the viscoelastic and mechanical failure properties of a poly(propylene glycol)/LiPF6‐based solid polymer electrolyte (SPE) at a graphitic carbon electrode interface. To account for the finite‐size effect of interface‐confined SPE films, the properties of two distinct film thicknesses are compared with the respective bulk properties. Additionally, the effect of uniaxial compression in the interface‐normal direction on free energy profiles of Li‐ion SPE‐desolvation is studied. © 2018 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 718–730  相似文献   

3.
A nanocomposite (NC) hydrogel crosslinked by inorganic Laponite XLG was successfully synthesized via in situ free radical polymerization of monomers N,N‐diethylacrylamide and (2‐dimethylamino) ethyl methacrylate (DMAEMA). Polymerization was carried out at room temperature due to the accelerating effect of DMAEMA. The as‐prepared hydrogels displayed controlled transformation in optical transmittance and volume in response to small diversification of environmental factors, such as temperature and pH. The compressive strength of swollen D6:1G6 hydrogels was as high as 2219 kPa while compressive strain was 95%. Cyclic compression measurement exhibited good elastic properties of NC hydrogels. This work provides a facile method for fabricating stimuli‐responsive hydrogels with superior mechanical property. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 876–884  相似文献   

4.
We report the self‐consistent field theory (SCFT) of the morphology of lamella‐forming diblock copolymer thin films confined in two horizontal symmetrical/asymmetrical surfaces. The morphological dependences of thin films on the polymer‐surface interactions and confinement, such as film thickness and confinement spatial structure, have been systematically investigated. Mechanisms of the morphological transitions can be understood mainly through the polymer‐surface interactions and confinement entropy, in which the plat confinement surface provides a surface‐induced effect. The confinement is expressed in the form of the ratio D/L0, here D is film thickness, and L0 is the period of bulk lamellar‐structure. Much richer morphologies and multiple surface‐induced morphological transitions for the lamella‐forming diblock copolymer thin films are observed, which have not been reported before. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1–10, 2009  相似文献   

5.
A novel rubber composite of acrylonitrile–butadiene rubber (NBR) filled with anhydrous copper sulfate (CuSO4) particles was investigated. Dynamic mechanical analysis, differential scanning calorimetry, X‐ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of this novel CuSO4/NBR composite. The results indicated that the composite had wonderful mechanical properties, which profited from the in situ coordination crosslinking interactions between the nitrile groups (? CN) of NBR and solid CuSO4 particles. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and transmission electron microscopy results showed that CuSO4 particles played two roles, acting as both crosslink agents and reinforcing fillers in the matrix. The double actions of CuSO4 gave the CuSO4/NBR composites their excellent mechanical properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 571–576, 2007  相似文献   

6.
A copolymer of N‐isopropylacrylamide (NIPAAm), ruthenium‐complex (Ru(bpy)3), and N‐succinimidyl acrylic acid (NAS) was synthesized to investigate its selfoscillating properties in a solution. This polymer exhibits selfoscillation in turbidity and viscosity synchronized via a Belousov–Zhabotinsky (BZ) reaction. The molecular size of the polymer during oscillation was investigated by dynamic light scattering and electrochemical measurements. Both molecular size and viscosity exhibited periodic changes during the BZ reaction. A simple mechanism accounting for such periodic changes was investigated by numerical calculations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1578–1588, 2007  相似文献   

7.
This article presents a new type of epoxy‐toughening system, in which high‐Tg polyaryletherketone (PEK‐L) containing one carboxyl group per repeating unit was utilized to randomly copolymerize with epoxy resin (DGEBA) to form crosslinking network. Compared to the neat epoxy resin, the PEK‐L/DGEBA copolymers showed simultaneous enhancement in flexural strains at break by 282%, GIC value by 193%, and flexural strength by 14%. The reason was attributed to the uniform three‐dimensional copolymer network interweaved by PEK‐L and DGEBA segments through strong covalent bonds. The copolymerization process were monitored and examined by FTIR spectra. The effect of copolymer composition on the thermal and mechanical properties as well as toughening mechanism were also investigated and discussed in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
9.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

10.
For improved mechanical and water‐swelling properties of chitosan films, a series of transparent films were prepared with dialdehyde starch as a crosslinking agent. Fourier transform infrared and X‐ray analysis results demonstrated that the formation of Schiff's base disturbed the crystallization of chitosan. The mechanical properties and water‐swelling properties of the films were significantly improved. The best values of the tensile strength and breaking elongation were 113.1 MPa and 27.0%, respectively, when the dialdehyde starch content was 5%. All the crosslinked films still retained obvious antimicrobial effects toward S. aureus and E. coli, and they showed potential for biomedical applications. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 993–997, 2003  相似文献   

11.
The effect of γ radiation on the morphological and physical properties of Styrene–butadiene rubber (SBR) and Ethylene–propylene–diene monomer (EPDM) blends has been investigated. An attempt has been made to establish a correlation between various parameters like Gordon–Taylor parameter (k), hydrodynamic interaction parameter (Δ[η]mix), chemical shift factor (b), Charlesby–Pinner parameter (p0/q0) and polymer–polymer interaction parameter (χ). The results showed a close dependence of mechanical and physical properties of irradiated blends on these parameters. The probability of spur overlap has been found to increase with the increase in EPDM content in the blends, which in turn results in significant improvement in the mechanical properties of the irradiated SBR–EPDM blends with higher EPDM fraction. The efficiency of four multifunctional acrylates as crosslinking aid for the radiation‐induced vulcanization of SBR–EPDM blend was also studied. The results established lower efficiency of methacrylates over acrylates in the process and indicated that among the crosslinking agents studied trimethylolpropane triacrylate is the most efficient one. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1676–1689, 2006  相似文献   

12.
The dynamic‐mechanical properties of different mixtures formed by an epoxy resin (DGEBA type) and a phenolic resin (resole type) cured by trietylenetetramine and/or p‐toluensulphonic acid at different concentrations have been studied by means of dynamic mechanical thermal analysis (DMTA). All samples were cured by pressing at 90 °C during 6 h. The mechanical studies were performed between ?100 to 300 °C at a heating rate of 2 °C/min. This study was also carried out for the epoxy‐TETA and phenolic‐p‐toluensulphonic acid systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1548–1555, 2005  相似文献   

13.
Nanoindentation is a widely used technique to characterize the mechanical properties of polymeric materials at the nanoscale. Extreme surface stiffening has been reported for soft polymers such as poly(dimethylsiloxane) (PDMS) rubber. Our recent work [J. Polym. Sci. Part B Polym. Phys. 2017 , 55, 30–38] provided a quantitative model which demonstrates such extreme stiffening can be associated with experimental artifacts, for example, error in surface detection. In this work, we have further investigated the effect of surface detection error on the determination of mechanical properties by varying the sample modulus, instrument surface detection criterion, and probe geometry. We have examined materials having Young's moduli from ∼2 MPa (PDMS) to 3 GPa (polystyrene) using two different nanoindentation instruments (G200 and TI 950) which implement different surface detection methods. The results show that surface detection error can lead to apparent large stiffening. The errors are lower for the stiffer materials, but can still be significant if care is not taken to establish the range of the surface detection error in a particular experimental situation. We have also examined the effect of pressure beneath the probe on the nanoindentation‐determined modulus of polystyrene with different probe geometries. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 414–428  相似文献   

14.
In this work the cure behavior and rheological and mechanical interfacial properties of the diglycidylether of bisphenol A (DGEBA)/polyurethane (PU) blend system, initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate as a latent thermal catalyst, were investigated. To characterize the mechanical interfacial properties of the system, the critical stress intensity factor (KIC) was calculated with a single‐edge‐notched beam (SEN) beam fracture toughness test. And an impact test was performed at room and cryogenic temperatures to determine the performance of PU at room and low‐temperatures, respectively. As a result, the Ec of the blend system was increased with increasing PU content, showing a maximum value at 30 wt % PU, which was in good agreement with the mechanical properties of the blend system. Consequently, these results could be explained by the improvement that occurred in intermolecular hydrogen bonding between the hydroxyl group in EP and the isocyanate group in PU, resulting in increased compatibility of the components within the interpenetrating polymer networks. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3841–3848, 2004  相似文献   

15.
A series of shape memory polyurethanes were synthesized from poly(tetramethylene glycol), 4,4‐methylene diphenyl diisocyanate, and 1,3‐butanediol. The prepolymers with different molecular weights (Mc) were capped with 2‐hydroxyl ethylacrylate or 3‐aminopropyltriethoxysilane (APTES) and crosslinked by UV curing or a sol–gel reaction. Variations of the crosslinker functionality (f), subchain density (N), and hard segment content (HSC) produced systematic variations of the glass transition temperature (6–45 °C), accompanied by changes in the mechanical, dynamic mechanical and shape memory properties. More than 95% of shape fixity and 98% of shape recovery up to the fourth cycles were obtained with APTES crosslinked 3000Mc with 30% of HSC. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1473–1479  相似文献   

16.
This work describes how physicochemical properties of salicylate‐based poly(anhydride‐esters) (PAEs) can be tuned for drug delivery and optimized by comparing copolymerization with polymer blending. These alterations reduced the lag time of drug release, while still maintaining a long‐term drug release profile. The chemical composition of the copolymers and polymer blends was determined by proton nuclear magnetic resonance and additional properties such as molecular weight, glass transition temperature and contact angle measurements were obtained. In vitro salicylic acid release from the copolymers and blends is studied in an environment mimicking physiological conditions. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 685–689  相似文献   

17.
We investigated the tensile strength and modulus of ultrahigh‐strength polyethylene (UHSPE) fibers obtained by using the special two‐step‐drawing process of as‐spun fiber (ASFs) which were prepared by the so‐called gel‐spinning method. We have found that the higher the ASF's spinning speed is, the higher the attainable tensile strength σf and modulus E are. For all the fibers drawn from ASFs with various spinning speed except for 120 m/min, we have found a master curve for the inverse of σf which is plotted as a function of T1/4E?1/2, where T is the linear density of the drawn fibers, in consistent with the Griffith theory: a thicker fiber obtained with a lower spinning speed exhibits lower strength, although all the AFSs possess the same value of E. This also suggests that a thicker fiber contains more defects which would lead to the Griffith‐type crack propagation breakage. Moreover, from morphological observation of ASFs under transmission electron microscopy, the ASF obtained at a relatively low spinning speed possesses a heterogeneous cross‐sectional morphology, whereas that obtained at relatively high spinning speed possesses a relatively homogenous morphology. We propose that this morphological evidence may account for the experimental findings of the behavior of the mechanical properties described above. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2639–2652, 2005  相似文献   

18.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

19.
The effect of high (>1000 V/mm) electric fields on solutions of a lyotropic liquid‐crystalline polymer, poly(n‐hexyl isocyanate) in p‐xylene, is presented. The concentrations are adjusted such that the solutions are strictly within the isotropic phase domain region, thus exhibiting no spontaneous liquid crystallinity. The effects of field strength, frequency, and concentration are varied and the morphological changes are noted. The results are analyzed with birefringence measurements via comparison with the optical Kerr effect. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4116–4125, 2004  相似文献   

20.
A mixture of two polymer materials, poly (9,9‐dioctylfluorene) (F8), and one of the poly(para‐phenylenevinylene) derivatives, superyellow (SY) have been used to make F81?x:SYx polymer blend system. Under a 3–5 ns pulsed‐laser excitation, this system showed excellent optical properties with low threshold values of ≈14 µJ/cm2 and ≈8 µJ/cm2 for amplified spontaneous emission and optically pumped lasing, respectively. The proposed system was also electroluminescent and an interesting candidate for future research on polymer injection lasers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 15–21  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号