首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydrothermal reaction of a mixture of ZnO, HCl, ethylenediphosphonic acid, ethylenediamine, acetic acid in a water, THF mixture gave rise to a new three‐dimensional zinc ethylenediphosphonate, [NH3(CH2)2NH3][Zn3{O3P(CH2)2}4], I . The structure, determined by single crystal X‐ray diffraction, (monoclinic, space group = C2/c, a = 16.9948(14), b = 6.7383(6), c = 16.8886(14)Å, β = 1113.568(1)°, V = 1772.7(3)Å3, Z = 4, R1 = 0.0227, wR2 = 0.0601), consists of a network of strictly alternating ZnO4 and PO3C tetrahedral units linked through their vertices forming the three‐dimensional structure. The amine molecules occupy the middle of the 8‐membered channels and interact with the framework through the hydrogen bonds. Unlike other zinc diphosphonates, I appear to have close similarity to zinc phosphate structures reported in the literature. To our knowledge, this is the first three‐dimensional zinc diphosphonate prepared in the presence of an organic amine molecule.  相似文献   

2.
A one‐dimensional aluminum phosphate, [NH3(CH2)2NH2(CH2)3NH3]3+ [Al(PO4)2]3—, has been synthesized hydrothermally in the presence of N‐(2‐Aminoethyl‐)1, 3‐diaminopropane (AEDAP) and its structure determined by single crystal X‐ray diffraction. Crystal data: space group = Pbca (no. 61), a = 16.850(2), b = 8.832(1), c = 17.688(4)Å, V = 2632.4(2)Å3, Z = 8, R1 = 0.0389 [5663 observed reflections with I > 2σ(I)]. The structure consists of anionic [Al(PO4)2]3— chains built up from AlO4 and PO4 tetrahedra, in which all the AlO4 vertices are shared and each PO4 tetrahedron possesses two terminal P=O linkages. The cations, which balances the negative charge of the chains, are located in between the chains and interact with the oxygen atoms through strong N—H···O hydrogen bonds. Additional characterization of the compound by powder XRD and MAS‐NMR has also been performed and described.  相似文献   

3.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   

4.
The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

5.
A Comparison of the Crystal Structures of the Tetraammoniates of Lithium Halides, LiBr·4NH3 and LiI·4NH3, with the Structure of Tetramethylammonium Iodide, N(CH3)4I Crystals of the tetraammoniates of LiBr and LiI sufficient in size for X‐ray structure determinations were obtained by slow evaporation of NH3 at room temperature from a clear solution of the halides in liquid ammonia. The compounds crystallize in the space group Pnma (No. 62) with four formula units in the unit cell: LiBr·4NH3: a = 11.947(5)Å, b = 7.047(4)Å, c = 9.472(3)Å LiI·4NH3: a = 12.646(3)Å, b = 7.302 (1)Å, c = 9.790(2)Å For N(CH3)4I the structure was now successfully solved including the hydrogen positions of the methyl groups. N(CH3)4I: P4/nmm (No. 129), Z = 2, a = 7.948(1)Å, c = 5.738(1)Å The ammoniates of LiBr and LiI crystallize isotypic in a strongly distorted arrangement of the CsCl motif. Even N(CH3)4I has an CsCl‐like structure. Both structure types differ mainly in their orientation of the [Li(NH3)4]+ — resp. [N(CH3)4]+ — cations with respect to the surrounding “cube” of anions.  相似文献   

6.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

7.
Alkylammonium Hexachlorometallates. I. Crystallization Properties and Crystal Structure of Diethylenetriammonium Hexachlororhodate, [H3N(CH2)2NH2(CH2)2NH3][RhCl6] The reaction of RhCl3 · 3H2O with diethylenetriamine in 12 m hydrochloric acid yielded diethylenetriammonium hexachlororhodate [H3N(CH2)2NH2(CH2)2NH3][RhCl6] ( 1 ). Dark red single crystals of the compound were grown under hydrothermal conditions at a temperature interval of 180°C to 125°C in closed glass ampoules over several weeks (space group C2/c, a = 30.956(4) Å, b = 7.371(2) Å, c = 12.9736(15) Å, β = 113.787(11)°, Z = 8, 2385 reflections with I > 0, wR2(obs.) = 0.0279, R1(I > 2σ(I)) = 0.0271). The crystal structure is determined by a complex framework of hydrogen bonds between the hexachlororhodate anions and the diethylenetriammonium cations.  相似文献   

8.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][PrCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][PrCl4(H2O)2] has been prepared for the first time and the crystal structure has been determined from single crystal X‐ray diffraction data. The compound crystallizes orthorhombically in the space group Cmca (Z = 8) with a = 1796.6(2) pm, b = 940.7(1) pm, and c = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge‐connected trigondodecahedra [PrCl6(H2O)2]3– according to [PrCl4/2Cl2(H2O)2], which are held together by dimethylammonium cations ([(CH3)2NH2]+). In order to study the interactions between the praseodymium cation (Pr3+) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

9.
A new microporous iron (III) phosphate, [H3N(CH2)4NH3]3[Fe8(HPO4)12(PO4)2(H2O)6], has been prepared using low temperature hydrothermal methods and characterized by single-crystal X-ray diffraction, EDAX, infrared spectroscopy, thermogravimetric analysis and bond valence sums. The title compound crystallizes as light pink hexagonal-shaped tabs in the centrosymmetric hexagonal space group 3¯ (No.147) with a = b = 13.495(2) Å, c = 9.396(2) Å, V = 1481.9(4) Å3 and Z = 4 with R/Rw = 0.044/0.048. The compound exhibits a complicated three-dimensional microporous structure with quaternary ammonium ions acting as a template for the framework. It is similar to previously reported [HN(CH2CH2)3NH]3[Fe8(HPO4)12(PO4)2(H2O)6].  相似文献   

10.
The two‐dimensional zinc phosphate [H3N(CH2)3NH3]0.5[Zn2(PO4)(HPO4)], has been synthesized hydrothermally using 1,3‐diaminopropane as the template. Its structure contains an inorganic framework with three‐, four‐, or six‐membered rings, built from PO4, PO3(OH) and ZnO4 tetrahedral moieties sharing vertexes. The protonated 1,3‐diaminopropane molecules interact with the framework through hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Two mixed‐valent disc‐like hepta‐nuclear compounds of [FeIIFeIII6(tea)6](ClO4)2 ( 1Fe , tea = N(CH2CH2O)33?) and [MnII3MnIII4(nmdea)6(N3)6]·CH3OH ( 2Mn , nmdea = CH3N(CH2CH2O)22?) have been synthesized by the reaction of Fe(ClO4)2·6H2O with triethanolamine (H3tea) for the former and reaction of Mn(ClO4)2·6H2O with diethanolamine (H2nmdea) and NaN3 for the later, respectively. 1Fe has the cationic cluster with a planar [FeIIFeIII6] core consisting of one central FeII and six rim FeIII atoms in hexagonal arrangement. The Fe ions are linked by the oxo‐bridges from the alcohol arms in the manner of edge‐sharing of their coordination octahedra. 2Mn is a neutral cluster with a [MnII3MnIII4] core possessing one central MnII atom surrounded by six rim Mn ions, two MnII and four MnIII. The structure is similar to 1Fe but involves six terminal azido ligands, each coordinate one rim Mn ion. 1Fe showed dominant antiferromagnetic interaction within the cluster and long‐range ordering at 2.7 K. The cluster probably has a ground state of low spin of S = 5/2 or 4/2. The long‐range ordering is weak ferromagnetic, showing small hysteresis with a remnant magnetization of 0.3 Nβ and a coercive field of 40 Oe. Moreover, the isofield of lines 1Fe are far from superposition, indicating the presence of significant zero–field splitting. Ferromagnetic interactions are dominant in 2Mn . An intermediate spin ground state 25/2 is observed at low field. In high field of 50 kOe, the energetically lowest state is given by the ms = 31/2 component of the S = 31/2 multiplet due to the Zeeman effect. Despite of the large ground state, no single‐molecule magnet behavior was found above 2 K.  相似文献   

12.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

13.
The reactions of Fe(CO)5 or Fe3(CO)12 with NaBEt3H or KB[CH(CH3)C2H5]3H, respectively and treatment of the resulting carbonylates M2Fe(CO)4, M = Na, K with elemental selenium in appropriate ratios lead to the formation of M2[Fe2(CO)6(μ‐Se)2]. Subsequent reactions with organo halides or the complex fragment cpFe(CO)2+, cp = η5‐C5H5 afforded the selenolato complexes [Fe2(CO)6(μ‐SeR)2], R = CH2SiMe3 ( 1 ), CH2Ph ( 2 ), p‐CH2C6H4NO2 ( 3 ), o‐CH2C6H4CH2 ( 4 ) and cpFe(CO)2+ ( 5 ) in moderate to good yields. A similar reaction employing Ru3(CO)12, Se and p‐O2NC6H4CH2Br leads to the formation of the corresponding organic diselenide. The X‐ray structures of 1 , 3 , 4 and 5 were determined and revealed butterfly structures of the Fe2Se2 cores. The substituents in 1 , 3  and 5 adopt different conformations depending on their steric demand. In 4 , the conformation is fixed because of the chelate effect of the ligand. The Fe–Se bond lengths lie in the range 235 to 240 pm, with corresponding Fe–Fe bond lengths of 254 to 256 pm. The 77Se NMR data of the new complexes are discussed and compared with the corresponding data of related complexes.  相似文献   

14.
New neptunium(VI) complex {H3NCH2CH(NH3)CH3}[(NpO2)2(CrO4)3(H2O)] · 3H2O is synthesized; its crystal structure is determined and IR and near-IR absorption spectra are recorded. The crystallographic data are: a = 10.805(2) Å, b = 11.238(2) Å, c = 17.615(8) Å, space group P212121, Z = 4, V = 2139(1) Å3, R = 0.051, wR(F 2) = 0.109. The crystal structure of the compound is built of the anionic layers of [(NpO2)2(CrO4)3(H2O)]2n n . The {H3NCH2CH(NH3)CH3}2+ cations and crystallization water molecules are arranged between the layers. Coordination polyhedron of two crystallographically independent Np atoms has the shape of a pentagonal bipyramid. The equatorial plane in one Np polyhedron is formed by the oxygen atoms of four chromate ions and water molecule and by the oxygen atoms of five chromate ions in the other one.  相似文献   

15.
The A‐site mixed‐ammonium solid solutions of metal–organic perovskites [(NH2NH3)x(CH3NH3)1?x][Mn(HCOO)3] (x=1.00–0.67) exhibit para‐ to ferroelectric diffuse phase transitions with lowered transition temperatures from x=1.00 to 0.67. These properties are due to the decreased framework distortion and polarization in their low temperature ferroelectric phases caused by the increased CH3NH3+ concentration.  相似文献   

16.
Mixed ligand complexes of Iron(III) with aspartic acid and 3(2′‐hydroxy phenyl)‐5‐(4′‐substituted phenyl) pyrazolines of type [Fe(C4O4NH6)2(C15H12N2OX)] and [Fe(C4O4NH6)(C15H12N2OX)2], where (C4O4NH6) = aspartate, (C15H12N2OX) = deprotonated 3(2′‐hydroxyphenyl)‐5‐(4′‐substituted phenyl) pyrazolines (X = H, CH3, OCH3, Cl), have been synthesized. These newly synthesized derivatives have been physicochemically characterized by elemental analysis (C, H, N, Cl and Fe), magnetic moment data, thermogravimetric analysis, molar conductance, cyclic voltammetry, spectral analysis (UV–visible, IR, far IR and fast atom bombardment mass spectrometry). Scanning electron microscopy, transmission electron microscopy and X‐ray powder diffraction studies have been carried out for powdered samples, which show nanometric particles of these derivatives. Antibacterial and antifungal potential of free pyrazoline and some iron(III) complexes have been evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A new porous 3D vanadophosphate, [NH3(CH2)6NH3][P2V5O17] · 3.83H2O ( 1 ) is synthesized by using NH2(CH2)6NH2 as template, and characterized by single crystal structural analysis, X‐ray diffraction, IR spectroscopy, TG analysis, and powder XRD. Single crystal analysis shows that compound 1 crystallizes in cubic shape, space group Im m with cell dimensions: a = b = c = 26.5068(8) Å, V = 18624.0(10) Å3, Z = 24. Structural refinement indicates that the inorganic framework of 1 is constructed from nanosized P–O–V wheels.  相似文献   

18.
两种镍的配合物[Ni(NH2CH2CH2CH2NH2)3]Cl2 (1)和[Ni(C6H4N2H4)2Cl2] (2)已经被合成并且通过红外和单晶X射线衍射分析对其进行了表征。在配合物1中,镍原子处于手性假八面体[NiN6]的几何构型中,它与三个1,3-丙二胺分子形成了三个六元环。在配合物2中,镍原子除了与两个o-苯二胺分子通过四个Ni-N键形成两个五元环外,它还与两个Cl原子配位形成了反式Ni-Cl2,这不同于以往报道过的镍的二胺配合物。这两个镍的配合物被MAO, MMAO或Et2AlCl活化后,对乙烯的二聚合或三聚合显示了很好的催化活性[对于配合物2,催化活性达到3.59×106 g mol-1 (Ni) h-1]。  相似文献   

19.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][NdCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][NdCl4(H2O)2] was prepared for the first time and the crystal structure was determined by X‐ray methods from single crystals. The compound crystallizes in the orthorhombic space group Cmca (Z = 8) with a = 1793.5(2) pm, b = 936.6(2) pm and c = 1232.8(2) pm. The anionic part of the structure is built up by chains of edge connected [NdCl4/2Cl2(H2O)2] trigondodecahedra. In order to study the interactions between the neodymium cation and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

20.
Anhydrous Lanthanum Acetate, La(CH3COO)3, and its Precursor, ·NH4)3[La(CH3COO)6] · 1/2 H2O: Synthesis, Structures, Thermal Behaviour Single crystals of (NH4)3[La(CH3COO)6] · ½ H2O are obtained by refluxing La2O3in (CH3COO)3 · 1.5 H2O with an excess of NH4CH3COO in methanol. The crystal structure (trigonal, R3 , Z = 6, a = 1 365.0(3) pm, c = 2 360(1) pm, R = 0.088, Rw = 0.061 exhibits the coordination number of nine for La3+, which is surrounded by three chelating-type bidentate and three unidentate acetate groups. Characteristic are monomeric units of [La(CH3COO)6]3? which are connected to a three-dimensional network by hydrogen bonds with the NH ions. Thermal decomposition consists of four steps with La(CH3COO)3, La2(CO3)3 and La2O2CO3 as intermediates and La2O3 as the final Product. Single crystals of La(CH3COO)3 are obtained from La2O3 in a melt of NH4CH3COO (molar ratio 1:12) in a sealed glass ampoule. The crystal structure (trigonal, R3 , Z = 18, a = 2 203.0(5) pm; c = 987.1(3) pm, R = 0.027, Rw = 0.023) shows the coordination number of ten for La3+. These are three-dimensionally connected by oxygen atoms of the acetate groups with two tetradentate double-bridging and one Z,Z-type-bridging bidentate acetate group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号