首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orange prismatic crystals of the first thallium hydrous nesosilicate Tl4SiO4·0.5H2O have been obtained by evaporation from aqueous solution. There are three symmetrically independent Tl+ cations and five symmetrically independent oxygen atoms in the structure of Tl4SiO4·0.5H2O. The O(4) and O(5) atoms belong to water molecules. Coordination polyhedra of the Tl+ cations are strongly distorted because of the stereoactive behavior of lone electron pairs. The structure of Tl4SiO4·0.5H2O contains sheets of SiO4 tetrahedra and Tl coordination polyhedra. The sheets have the composition [Tl3SiO4] and are parallel to [100]. Within the sheets, SiO4 tetrahedra link to thallium polyhedra though common corners. The sheets are linked by dimers of face‐sharing Tl(3)O5 polyhedra, thus providing interconnection of the sheets into a framework. The framework has large elliptical channels occupied by water molecules (OW2) and electron pairs of Tl+ cations.The comparison with some other M+ (M = K, Ag, Tl) silicates is given.  相似文献   

2.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

3.
Slow cooling of melts composed of TlCl and BiCl3 allows for the isolation of the compounds Tl3BiCl6 ( 1 ) and TlBi2Cl7 ( 2 ). Compound 1 is formed by sublimation at 480 °C from the black melt of 3 TlCl + 1 BiCl3 as colourless crystals. The crystal structure determination (tetragonal, P42/m) consists of nearly regular octahedral [BiCl6]3– anions and two independent Tl+ cations, which have coordination number 8 in form of a slightly distorted cube and 10 in form of an Edshamar polyhedron, respectively. The structure is not isotypic with the recently reported naturally occurring form of Tl3BiCl6, the mineral steropesite. Compound 2 is obtained from a dark red melt of composition TlCl + 2 BiCl3. On rapid cooling, this melt solidifies to a metastable dark red glass which at ambient temperature crystallises to a light amber crystalline powder within some weeks. The structure of 2 was determined by powder diffraction (triclinic, P\bar{1} ). A distinct lone pair effect is present causing an irregular coordination on the two independent bismuth atoms. Taking Bi–Cl bonds up to 3.5 Å into account, both bismuth atoms gain coordination number seven. 203Tl and 205Tl solid state NMR and XANES spectra on the Bi and Tl‐LIII edges of both glassy and crystalline TlBi2Cl7 show that a close structural similarity exists between both forms. In contrast, the Raman spectra show distinct differences in the bands of the Bi–Cl vibrations region.  相似文献   

4.
Two new three‐dimensional neutral open‐framework tin(II) phosphates, Sn5O2(PO4)2 and Sn4O(PO4)2, were synthesized under hydrothermal conditions with different ratio of tin(II) oxalate, phosphoric acid and 4,4′‐diaminodiphenylmethane. Their crystal structures have been solved by single‐crystal X‐ray diffraction methods. Sn5O2(PO4)2 crystallizes in the space group and contains six‐membered ring and twelve‐membered ring channels running parallel to the b axis. Sn4O(PO4)2 crystallizes in the space group P21/n and contains intersecting eight‐membered ring channels. These two compounds have rare trigonal‐planar Sn3O.  相似文献   

5.
6.
The new thallium(I) salts, Tl2H2P2O6 ( 1 ) and Tl4P2O6 ( 2 ), were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group P21/c and compound 2 in the orthorhombic space group Pbca. Both structures feature channels occupied by the lone electron pairs of Tl+ cations. Furthermore, those are built up by discrete [H2P2O6]2– for compound 1 and [P2O6]4– units for 2 in staggered conformation for the P2O6 skeleton and the thallium cations. In Tl2H2P2O6 ( 1 ) the hydrogen atoms of the [H2P2O6]2– ion are in a “trans‐trans” conformation. The O ··· H–O hydrogen bonds between the [H2P2O6]2– groups consolidate the structure 1 into a three‐dimensional network. FT‐IR/FIR and FT‐Raman spectra of the crystalline title compounds were recorded and a complete assignment for the P2O64– modes is proposed. The phase purity of 1 was verified by powder diffraction measurements.  相似文献   

7.
Yellowish single crystals of acidic mercury(I) phosphate (Hg2)2(H2PO4)(PO4) were obtained at 200 °C under hydrothermal conditions in 32% HF from a starting complex of microcrystalline (Hg2)2P2O7. Refinement of single crystal data converged at a conventional residual R[F2 > 2σ(F2)] = 3.8% (C2/c, Z = 8, a = 9.597(2) Å, b = 12.673(2) Å, c = 7.976(1) Å, β = 110.91(1)°, V = 906.2(2) Å3, 1426 independent reflections > 2σ out of 4147 reflections, 66 variables). The crystal structure consists of Hg22+‐dumbbells and discrete phosphate groups H2PO4 and PO43–. The Hg22+ pairs are built of two crystallographically independent Hg atoms with a distance d(Hg1–Hg2) = 2.5240(6) Å. The oxygen coordination sphere around the mercury atoms is asymmetric with three O atoms for Hg1 and four O atoms for Hg2. The oxygen atoms belong to the different PO4 tetrahedra, which in case of H2PO4‐groups are connected by hydrogen bonding. Upon heating over 230 °C, (Hg2)2(H2PO4)(PO4) condenses to (Hg2)2P2O7, which in turn disproportionates at higher temperatures into Hg2P2O7 and elemental mercury.  相似文献   

8.
TlCu5O(VO4)3 with KCu5O(VO4)3 Structure – a Thallium Copper(II) Oxide Vanadate as an Oxidation Product of a Tl/Cu/V Alloy Brown‐black crystals of the new oxide vanadate TlCu5O(VO4)3 (triclinic, P1, a = 610.4(1) pm, b = 828.9(1) pm, c = 1075.3(1) pm, α = 97.70(1)°, β = 92.25(1)°, γ = 90.28(1)°, Z = 2) were obtained as a byproduct during the reaction of a Tl/Cu/V alloy with oxygen. The compound is isotypic with KCu5O(VO4)3. All the crystals investigated were twins by non‐merohedry with [100] as the twin axis. The structure contains ladder shaped [Cu10O26]‐ribbons composed of edge‐ and corner‐sharing [CuO5]‐polyhedra (tetragonal pyramids and trigonal bipyramids) and linked by vanadate groups. The thallium ions fill channels running along the a axis. No stereochemical activity of the thallium(I)‐lone pair is observed.  相似文献   

9.
Single crystals of a new phosphate AgCr2(PO4)(P2O7) have been prepared by the flux method and its structural and the infrared spectrum have been investigated. This compound crystallizes in the monoclinic system with the space group C2/c and the parameters are, a = 11.493 (3) Å, b = 8.486 (3) Å, c = 8.791 (2) Å, β = 114.56 (2)°, V = 779.8 (3) Å3and Z = 4. Its structure consists of CrO6 octahedra sharing corners with P2O7 units to form undulating chains extending infinitely along the [110] direction. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the Ag+ ions are located. The infrared spectrum of this compound was interpreted on the basis of P2O74? and PO43? vibrations. The appearance of νsP–O–P in the spectrum suggests a bent P–O–P bridge for the P2O74? ions in the compound, which is in agreement with the X-ray data. The electrical measurements allow us to obtain the activation energy of (1.36 eV) and the conductivity measurements suggest that the charge carriers through the structure are the silver captions.  相似文献   

10.
The Copper(II) Oxide Phosphate Cu4O(PO4)2 in a New, Orthorhombic Modification by Oxidation of a Tl/Cu/P Alloy Single crystals of Cu4O(PO4)2 in a new, orthorhombic modification were prepared by reaction of a Tl/Cu/P alloy with oxygen. The compound crystallizes in the space group Pnma with Z = 4 and lattice constants a = 808.8(5) pm, b = 627.0(7) pm, c = 1338.3(1) pm. It is isotypic with the orthorhombic form of Cu4O(AsO4)2. The copper atoms are five-coordinated by oxygen. The distorted square-pyramidal and trigonal-bipyramidal polyhedra are connected by edges and vertices to form [Cu8O18] ribbons running along [010] and forming slabs perpendicular to the c-axis interconnected by phosphate groups.  相似文献   

11.
12.
Tl2CuAsO4 – an Intermediate Phase in the Oxidation of Tl/Cu/As Alloys with Oxygen Waxy, honey-jellow single crystals of the new compound Tl2CuAsO4 (monoclinic, P21/c, a = 860.1(1) pm, b = 533.94(7) pm, c = 1200.1(2) pm, β = 98.10(1)°, Z = 4) were prepared as an intermediate product of the oxidation process in the reaction of Tl/Cu/As-alloys with oxygen. Their structure was determined from IPDS data (w2R = 0.071 for 1271 F2 values and 74 parameters). The structure contains an isolated [Cu2As2O8]4– group consisting of two AsO4-tetrahedra connected by two Cu+ ions with an approximately linear O–Cu–O coordination. The [Cu2As2O8]4– groups are linked to a threedimensional framework by thallium(I) ions which show an hemispheric coordination sphere of oxygen ions indicating the stereochemical activity of the Tl+ lone pair.  相似文献   

13.
Thallium sesquibromide Tl2Br3 is dimorphic. Scarlet coloured crystals of α‐Tl2Br3 were obtained by reactions of aqueous solutions of TlBr3 and Tl2SO4 in agarose gel. In case of rapid crystallisation of hydrous TlBr3/TlBr solutions and from TlBr/TlBr2 melts ß‐Tl2Br3 is formed as scarlet coloured, extremely thin lamellae. The crystal structures of both forms are very similar and can be described as mixed‐valence thallium(I)‐hexabromothallates(III) Tl3[TlBr6]. In the monoclinic unit cell of α‐Tl3[TlBr6] (a = 26.763(7) Å; b = 15.311(6) Å; c = 27.375(6) Å; β = 108.63(2)°, Z = 32, space gr. C2/c) the 32 TlIII‐cations are found in strongly distorted octahedral TlBr6 groups. The 96 TlI cations are surrounded either by four or six TlBr6 groups with contacts to 8 or 9 Br neighbors. Crystals of β‐Tl3[TlBr6] by contrast show almost hexagonal metrics (a = 13.124(4) Å, b = 13.130(4) Å, c = 25.550(7) Å, γ = 119.91(9)°, Z = 12, P21/m). Refinements of the parameters revealed structural disorder of TlBr6 units, possibly resulting from multiple twinning. Both structures are composed of Tl2[TlBr6] and Tl4[TlBr6]+ multilayers, which alternate parallel (001). The structural relationships of the complicated structures of α‐ and β‐Tl3[TlBr6] to the three polymorphous forms of Tl2Cl3 as well as to the structures of monoclinic hexachlorothallates M3TlCl6 (M = K, Rb) and the cubic elpasolites are discussed.  相似文献   

14.
Oxygen equilibrium pressures have been measured in the temperature range 800 °C to 1000 °C by coulometric/potentiometric techniques for several equilibrium regions in the ternary systems M / P / O (M = Co, Ni). In both systems oxygen coexistence pressures of three‐phase equilibrium solids phosphide/phosphate are about 3 to 5 orders of magnitude smaller than p(O2) above the corresponding Ms / MOs system. Heats of formation Δf298 and standard entropies 298 for the phosphates have been obtained from 2nd and 3rd law evaluation of the temperature dependence of the oxygen coexistence pressures. Thermodynamic data from literature for the phosphides of cobalt and nickel and estimated heat capacities for the anhydrous phosphates Co3(PO4)2, Co2P2O7, Ni3(PO4)2, Ni2P2O7 and Ni2P4O12 were used for these calculations. Thus obtained enthalpies and entropies are compared to results from thermodynamic modelling of observed solid phase equilibria in the ternary systems M / P / O (M = Co, Ni).  相似文献   

15.
Structural and Magnetochemical Studies at the Ternary Phosphates Ba2MII(PO4)2 (MII = Mn, Co) and Refinement of the Crystal Structure of BaNi2(PO4)2 Single crystals of the following phosphates were grown by the floating zone technique using a mirror furnace and their crystal structures refined (0,02 < R1 < 0,04 and 0,04 < wR2 < 0,10, resp.): Ba2Mn(PO4)2 (a = 531.1(1), b = 896.8(1), c = 1625.6(3) pm, β = 90.26(1)°), Ba2Co(PO4)2 (a = 529.8(1), b = 884.4(1), c = 1614.4(3) pm, β = 90.68(2)°) and BaNi2(PO4)2 (a = 480.0(1), c = 2327.3(5) pm, Z = 3, space group R3). Both compounds Ba2MII(PO4)2 crystallize with Z = 4 in space group P21/n of the monoclinic Ba2Ni(PO4)2 type; BaNi2(PO4)2 has the hexagonal‐rhombohedral structure of the BaNi2(AsO4)2 type. Magnetic measurements of powders of Ba2Mn(PO4)2 and Ba2Co(PO4)2 yielded room temperature moments of μeff = 5,73 and 4,93 μB, resp., but only the manganese compound obeys the Curie‐Weiss law down to low temperatures. Weak antiferromagnetic interactions at both compounds only near TM ≈ 5 K lead to a reciprocal susceptibility minimum.  相似文献   

16.
The crystal structure of RbTlI4·2H2O (cubic, , Nr. 226, Z = 24, a = 1993.5(2) pm, 327 unique reflections with Io > 2σ(Io), R1 = 0.0305, wR2 = 0.0702, GooF = 1.1199, T = 298(2) K) is characterized by an ReO3 analogous arrangement of rubidium centered [TlI4] tetrahedra. The cuboctahedral cavities of this structure are filled with crystal water molecules and additional disordered rubidium cations.  相似文献   

17.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

18.
The 1:2 adduct lead(II) complexes with 1, 10‐phenanthroline (phen) containing three different anions, [Pb(phen)2(CH3COO)X] (X=NCS, NO3 and ClO4), have been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The structure of [Pb(phen)2(CH3COO)(ClO4)] was determined by single crystal X‐ray analysis. The Pb atom of the monomeric complex is coordinated by four nitrogen atoms of two 1, 10‐phenanthroline ligands and two oxygen atoms of the acetate ligand to form an irregular octahedron. The arrangement of the 1, 10‐phenanthroline and acetate ligands, exhibits a coordination gap around the PbII ion, possibly occupied by a stereochemical electron active lone pair on lead(II), which results in a hemidirected lead compound. The π‐π stacking interaction between the parallel aromatic rings may help to increase the coordination ‘gap’ around the PbII ion.  相似文献   

19.
The Reaction of freshly precipitated NiCO3 with phenanthroline and suberic acid in CH3OH/H2O at room temperature gave the title complex consisting of polymeric {Ni[Ni(phen)(H2O)4]2L4/2}2+ cationic chains, suberate anions and hydrogen bonded H2O molecules. The cationic chains are generated from bis‐monodentate suberato ligands bridging the trinuclear {Ni[Ni(phen)(H2O)4]2}6+ groups, in which the central Ni atom is, via two μ‐H2O molecules, coordinated to two monodentate cationic [Ni(phen)(H2O)4]2+ complex ligands at trans positions. The NiO6 octahedral coordination about the central Ni atom is elongated tetragonally distorted with d(Ni—O) = 2.033—2.166Å and the NiN2O4 octahedra about the side Ni atoms are significantly distorted with d(Ni—N) = 2.089, 2.099Å, d(Ni—O) = 2.046—2.117Å. The polymeric cationic chains are assembled via π—π stacking interactions into open 2D layers, between which the suberate anions and crystal H2O molecules are sandwiched. Crystal data: triclinic, P1¯ (no. 2), a = 11.397(2)Å, b = 11.975(2)Å, c = 12.500(2)Å, α = 107.75(1)°, β = 104.50(1)°, γ = 109.68(1)°, Z = 1, R = 0.0521, wR2 = 0.1249 for 3892 out of 6198 reflections with Fo2 > 2σ(Fo2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号