首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(21) 5559 . The initiator efficiency, f, of 2,2′‐azobis(isobutyronitrile) (AIBN) in dodecyl acrylate (DA) bulk free‐radical polymerizations has been determined over a wide range of monomer conversion in high‐molecular‐weight regimes (Mn ? 106 g mol?1 [? 4160 units of DA)] with time‐dependent conversion data obtained via online Fourier transform near infrared spectroscopy (FTNIR) at 60 °C. In addition, the required initiator decomposition rate coefficient, kd, was determined via online UV spectrometry and was found to be 8.4 · 10?6 s?1 (±0.5 · 10?6 s?1) in dodecane, n‐butyl acetate, and n‐dodecyl acetate at 60 °C. The initiator efficiency at low monomer conversions is relatively low (f = 0.13) and decreases with increasing monomer to polymer conversions. The evolution of f with monomer conversion (in high‐molecular‐weight regimes), x, at 60 °C can be summarized by the following functionality: f60 °C (x) = 0.13–0.22 · x + 0.25 · x2 (for x ≤ 0.45). The reported efficiency data are believed to have an error of >50%. The ratio of the initiator efficiency and the average termination rate coefficient, 〈kt±, (f/〈kt〉) has been determined at various molecular weights for the generated polydodecyl acrylate (Mn = 1900 g mol?1 (? 8 units of DA) up to Mn = 36,500 g mol?1 (? 152 units of DA). The (f/〈kt〉) data may be indicative of a chain length‐dependent termination rate coefficient decreasing with (average) chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5170–5179, 2004  相似文献   

2.
Relative rate techniques were used to study the kinetics of the reaction of OH radicals with acetylene at 296 K in 25–8000 Torr of air, N2/O2, or O2 diluent. Results obtained at total pressures of 25–750 Torr were in good agreement with the literature data. At pressures >3000 Torr, our results were substantially (~35%) lower than that reported previously. The kinetic data obtained over the pressure range 25–8000 Torr are well described (within 15%) by the Troe expression using ko = (2.92 ± 0.55) × 10?30 cm6 molecule?2 s?1, k = (9.69 ± 0.30) × 10?13 cm3 molecule?1 s?1, and Fc = 0.60. At 760 Torr total pressure, this expression gives k = 8.49 × 10?13 cm molecule?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 191–197, 2003  相似文献   

3.
The pressure derivatives of the second virial coefficients [dA2/dP; 0.1 ≤ P (MPa) ≤ 35.0] for dilute polystyrene (PS) solutions in good, θ, and poor solvents were measured with static light scattering. The solvent quality improved (dA2/dP > 0) in the good and poor solvents that we investigated (toluene, chloroform; and methylcyclohexane) but deteriorated (dA2/dP < 0) in θ solvents (cyclohexane and 50‐50 cis,trans‐decalin). The effects of temperature [22 < T (°C) < 45] and molecular weight [25 × 103 < weight‐average molecular weight (amu mol?1) < 900 × 103] on dA2/dP for PS/cyclohexane solutions were examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3070–3076, 2003  相似文献   

4.
The thermal behavior of three aromatic polyesters in a homologous series, poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poly(butylene terephthalate) (PBT) was studied under hydrostatic pressure up to 200 MPa by using a high pressure differential thermal analysis apparatus. Confining fluid high pressure dilatometer was used to establish the volume–temperature curves (in both solid and liquid regions) from which volume change on melting of these polyesters at atmospheric pressure was determined. Single endothermic peak was seen for PET and PTT, whereas PBT showed double peaks above 50 MPa. Pressure coefficient of melting temperature at atmospheric pressure (dTm/dp(0)), was obtained from the quadratic fit. The dTm/dp(0) for PTT was newly determined to be 0.445 KMPa?1, whereas for PET and PBT were 0.503 and 0.455 KMPa?1, respectively, comparable to reported values. The dTm/dp(0) exhibited the odd‐even behavior corresponding to odd and even number of methylene groups in the repeat unit. Enthalpy and entropy of fusion had the most influence on this coefficient. Entropy related to conformational and volume change were evaluated and the former was found to have a significant impact on the value of dTm/dp(0). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1799–1808, 2009  相似文献   

5.
The thermal decomposition of CCl3O2NO2,CCl2FO2NO2, and CClF2O2NO2 was studied in a temperature-controlled 420 l reaction chamber using in situ detection of peroxynitrates by long-path IR absorption. The temperature dependence of the unimolecular dissociation rate constants was determined at total pressures of 10 and 800 mbar in nitrogen as buffer gas, and the pressure dependence was measured at 273 K between 10 and 800 mbar. In Troe's notation, the data are represented by the following values for the limiting low and high pressure rate constants k0/[N2] and k and the fall-off curvature parameter Fc (in units of cm3 molecule?1 s?1, s?1): CCl3O2NO2,k0/[N2] = 6.3 × 10?3 exp(?85.1 kJ · mol?1/RT), k = 4.8 × 1016 exp(?98.3 kJ · mol?1/RT), Fc = 0.22; CCl2FO2NO2, k0/[N2] = 1.01× 10?2 exp(?90.3 kJ · mol?1/RT), k = 6.6 × 1016 exp(?101.8 kJ · mol?1/RT), Fc = 0.28; and CClF2O2NO2, k0/[N2] = 1.80 × 10?3 exp(?87.3 kJ · mol?1/RT), k = 1.60 × 1016exp(?99.7 kJ · mol?1/RT), Fc = 0.30. From these dissociation rate constants and recently measured rate constants for the reverse reaction (see Caralp, Lesclaux, Rayez, Rayez, and Forst [19]), bond energies (=ΔH) of 100, 103, and 104 kJ/mol were derived for the RO2–NO2 bonds in CCl3O2NO2, CCl2FO2NO2, and CClF2O2NO2, respectively. The kinetic and thermochemical parameters of these decomposition reactions are compared with those of the dissociation of other peroxynitrates. Atmospheric implications of the thermal stability of chlorofluoromethyl peroxynitrates are briefly discussed.  相似文献   

6.
Two coordination complexes, [Co2L2(4,4′-bpy)2(H2O)4]?·?6H2O (1) and [CoL(4,4′-bpy)] (2) (H2L?=?4,6-bis(4-methylbenzoyl)isophthalic acid and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized with the same starting materials under conventional and hydrothermal condition, respectively. Their structures have been characterized by X-ray diffraction, elemental analysis, IR spectra, and thermogravimetric analysis. Complex 1 features a 2-D sheet structure (space group C2/c) with (4,4) grid units. The non-covalent interactions (O–H?·?·?·?O, C–H?·?·?·?π, and weak π??·?·?·?π interactions) extend 1 into a 3-D supramolecular network. Complex 2 displays a (3,5)-connected network (space group P 1) with a (42?·?6)(42?·?68) topology.  相似文献   

7.
Double metal cyanide complexes based on Zn3[Co(CN)6]2 were prepared in the presence of different complexing agents and used in the copolymerization of carbon dioxide and cyclohexene oxide. The FTIR and 1H NMR spectra of the products verified the formation of polycarbonate. Compared with zinc carboxylate, zinc phenoxide, and so forth, these catalysts demonstrated great enhancement of catalytic activity. Their highest turnover number and turnover frequency reached 3300 and 1650 h?1, respectively, at 90 °C. The molar fraction of CO2 (FCO2) for the copolymers was about 0.44–0.47, and it varied slightly with different catalysts under a temperature of 90 °C and a pressure of 3.8 MPa. The study showed that the FCO2 can reach 0.40 even at 0.6 MPa, and it changed slightly above 3.8 MPa. The reaction rate had little influence on the FCO2 under our experimental conditions. A relatively low temperature was favorable for the incorporation of CO2. The monitoring of copolymerization revealed the molecular weight was proportional to the reaction conversion. The molecular weight distribution was in the range of 4.5–6, and the reaction rate was proportional to the amount of catalyst that was used. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5284–5291, 2004  相似文献   

8.
The solubility (m S) of l-methionine in water was measured at 298.2 K and pressures up to 200 MPa. The data were fitted to the equation ln(m S/mol·kg?1) = ?4.62 × 10?6 (p/MPa)2 + 2.65 × 10?3 (p/MPa) ? 0.970 with a standard deviation of σ(ln m S) = 0.002. The pressure coefficient of the logarithm of solubility (?ln m S/?p) T was thermodynamically estimated to be (2.62 ± 0.34) × 10?3 MPa?1 at 0.10 MPa using several parameters such as partial molar volume and activity coefficient of l-methionine in water and molar volume of solid l-methionine. The resulting value agrees well with the second term on the right-hand side of the fitted equation above, indicating the reliability of the high-pressure solubility measurements. The value of (?ln m S/?p) T also was compared with those of other amino acids.  相似文献   

9.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

10.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

11.
The 2,6‐spirodicyclohexyl substituted nitroxide, cyclohexane‐1‐spiro‐2′‐(3′,5′‐dioxo‐4′‐benzylpiperazine‐1′‐oxyl)‐6′‐spiro‐1″‐cyclohexane (BODAZ), was investigated as a mediator for controlled/living free‐radical polymerization of styrene. The values of the number‐average molecular weight increased linearly with conversion, but the polydispersities were higher than for the corresponding 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (TEMPO) and 2,5‐bis(spirocyclohexyl)‐3‐benzylimidazolidin‐4‐one‐1‐oxyl (NO88Bn) mediated systems at approximately 2.2 and 1.6 at 100 and 120 °C, respectively. These results were reflected in the rate coefficients obtained by electron spin resonance spectroscopy; at 120 °C, the values of the rate coefficients for polystyrene‐BODAZ alkoxyamine dissociation (kd), combination of BODAZ and propagating radicals (kc), and the equilibrium constant (K) were 1.60 × 10?5 s?1, 5.19 × 106 M?1 s?1, and 3.08 × 10?12 M, respectively. The value of kd was approximately one and two orders of magnitude lower, and that of K was approximately 20 and 7 times lower than for the NO88Bn and TEMPO adducts. These results are explained in terms of X‐ray crystal structures of BODAZ and NO88Bn; the six‐membered ring of BODAZ deviates significantly from planarity as compared to the planar five‐membered ring of NO88Bn and possesses a benzyl substituent oriented away from the nitroxyl group leading to a seemingly more exposed oxyl group, which resulted in a higher kc and a lower kd than NO88Bn. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3892–3900, 2003  相似文献   

12.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

13.
Thioxanthone‐based 9‐(2‐Morpholine‐4yl‐acetyl)‐5‐thia‐napthasen‐12‐one (TX‐MPM) was synthesized and characterized as a one‐component novel visible photoinitiator. Its capability to act as an initiator for the polymerization of methyl methacrylate (MMA) was examined in photoreactor and also daylight. Photophysical properties: fluorescence and phosphorescence emission spectra and fluorescence quantum yield of TX‐MPM (?f = 0.29) were determined. The phosphorescence lifetime was found 131 ms for TX‐MPM and 110 ms for initiator‐attached polymer (PMMA) at 77 K, indicated a π→π* nature of the lowest triplet state. A model compound, morpholino acetonapthone was used as quencher for the triplet states of TX‐MPM and the quenching rate constant was determined (kq = 1.26 × 109 M?1s?1). According to laser flash photolysis studies, intermolecular hydrogen abstraction process was more dominant path to the formation of the initiating radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Preparation und Characterization of Phthalocyanine-π-Cation-Radicals of H+, Mg2+, and Cu2+ The preparation of phthalocyanine-π-cation-radicals (Pc(?1)) of H+, Mg2+, Cu2+ is described. MgClPc(?1) and Cu(NO3)Pc(?1) · HNO3 are isolated as stoichiometrically pure, stable redbrown solids. Contrary to the phthalocyanines(?2) (Pc(?2)) these are very soluble with redviolet colour in organic solvents in the presence of R? COOH (R ? H, CF3, CCl3). The electronic absorption absorption spectra (UV-VIS) are remarkably solvent-dependent. This solvent effect is due to a reversible radical association. Monomeric radical species exist in nonpolar (CH2Cl2), dimeric in polar solvents (CH3NO2, C2H5OH). The UV-VIS, infrared (IR), and resonance-raman (RR) spectra of MgClPc(?1) and Cu(NO3)Pc(?1) · HNO3 are discussed and compared with the analogoues spectra of MgPc(?2) · 2 H2O and MgPc(?2) · HCl. Although there are only minor differences in the chemical composition and the electronic structure the spectroscopic data vary significantly for every complex. Especially the IR spectrum is suitable for a quick demonstration of the π-cation-radicals. The diagnostic bands are at ca. 1350 and 1450 cm?1.  相似文献   

15.
Pulsed laser polymerization was used in conjunction with aqueous‐phase size exclusion chromatography with multi‐angle laser light scattering detection to determine the propagation rate coefficient (kp) for the water‐soluble monomer acrylamide. The influence of the monomer concentration was investigated from 0.3 to 2.8 M, and kp decreased with increasing monomer concentration. These data and data for acrylic acid in water were consistent with this decrease being caused by the depletion of the monomer concentration by dimer formation in water. Two photoinitiators, uranyl nitrate and 2,2′‐azobis(2‐amidinopropane) (V‐50), were used; kp was dependent on their concentrations. The concentration dependence of kp was ascribed to a combination of solvent effects arising from association (thermodynamic effects) and changes in the free energy of activation (effects of the solvent on the structure of the reactant and transition state). Arrhenius parameters for kp (M?1 s?1) = 107.2 exp(?13.4 kJ mol?1/RT) and kp (M?1 s?1) = 107.1 exp(?12.9 kJ mol?1/RT) were obtained for 0.002 M uranyl nitrate and V‐50, respectively, with a monomer concentration of 0.32 M. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1357–1368, 2005  相似文献   

16.
Thermal decomposition of cyclopentadiene to c‐C5H5 (cyclopentadienyl radical) + H (1) and the reverse bimolecular reaction (?1) are studied quantum‐chemically at the G2M level of theory. The dissociation pathway has been mapped out following the minimum energy path on the potential energy surface (PES) calculated by the density functional UB3LYP/6‐311G(d,p) method. Using isodesmic reaction analysis, the standard enthalpy of formation for c‐C5H5 is found to be 62.5 ± 1.3 kcal mol?1, and the c‐C5H5? H bond dissociation energy is estimated as D°298(c‐C5H5? H) = 82.5 ± 0.9 kcal mol?1, in excellent agreement with the recent experimental values. Variational rate constants are computed on the basis of a scaled UB3LYP dissociation potential that fits the isodesmic/experimental enthalpy of Reaction (1). At the high pressure limit, k1 = 1.55 × 1018 T?0.8 exp(?42300/T) s?1 and k?1 = 2.67 × 1014 exp(?245/T) cm3 mol?1 s?1. The fall‐off effects are evaluated by a weak collision master equation/RRKM analysis. Calculated T, P‐dependent rate constants are in very good agreement with the most reliable experimental measurements. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 139–151 2004  相似文献   

17.
The kinetics and mechanism for the reaction of NH2 with HONO2 have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the B3LYP/6‐311+G(3df, 2p) level. The reaction producing the primary products, NH3 + NO3, takes place via a precursor complex, H2N…HONO2 with an 8.4‐kcal/mol binding energy. The rate constants for major product channels in the temperature range 200–3000 K are predicted by variational transition state or variational Rice–Ramsperger–Kassel–Marcus theory. The results show that the reaction has a noticeable pressure dependence at T < 900 K. The total rate constants at 760 Torr Ar‐pressure can be represented by ktotal = 1.71 × 10?3 × T?3.85 exp(?96/T) cm3 molecule?1 s?1 at T = 200–550 K, 5.11 × 10?23 × T+3.22 exp(70/T) cm3 molecule?1 s?1 at T = 550–3000 K. The branching ratios of primary channels at 760 Torr Ar‐pressure are predicted: k1 producing NH3 + NO3 accounts for 1.00–0.99 in the temperature range of 200–3000 K and k2 + k3 producing H2NO + HONO accounts for less than 0.01 when temperature is more than 2600 K. The reverse reaction, NH3 + NO3 → NH2 + HONO2 shows relatively weak pressure dependence at P < 100 Torr and T < 600 K due to its precursor complex, NH3…O3N with a lower binding energy of 1.8 kcal/mol. The predicted rate constants can be represented by k?1 = 6.70 × 10?24 × T+3.58 exp(?850/T) cm3 molecule?1 s?1 at T = 200–3000 K and 760 Torr N2 pressure, where the predicted rate at T = 298 K, 2.8 × 10?16 cm3 molecule?1 s?1 is in good agreement with the experimental data. The NH3 + NO3 formation rate constant was found to be a factor of 4 smaller than that of the reaction OH + HONO2 producing the H2O + NO3 because of the lower barrier for the transition state for the OH + HONO2. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 69–78, 2010  相似文献   

18.
A hyperbranched polyester was fractionated by precipitation to produce 10 fractions with molecular weights between 20 × 103 and 520 × 103 g mol?1. Each of these fractions was examined by size exclusion chromatography, dilute‐solution viscometry, intensity, and quasi‐elastic light scattering in chloroform solution at 298 K. High‐resolution solution‐state 13C NMR was used to determine the degree of branching; for all fractions this factor was 0.5 ± 0.1. Viscometric contraction factors, g′, decreased with increasing molecular weight, and the relation of this parameter to the configurational contraction factor, g, calculated from a theoretical relation suggested a very strong dependence on the universal viscosity constant, Φ, on the contraction factor. A modified Stockmayer–Fixman plot was used to determine the value of (〈r2o/Mw)1/2, which was much larger than the value for the analogous linear polymer. The scaling relations of the various characteristic radii (Rg, Rh, RT, and Rη) with molecular weight all had exponents less than 0.5 that agreed with the theoretical predictions for hyperbranched polymers. The exponent for Rg was interpreted as fractal dimension and had a value of 2.38 ± 0.25, a value that is of the same order as that anticipated by theory for branched polymers in theta conditions and certainly not approaching the value of 3 that would be associated with the spherical morphology and uniform segment density distribution of dendrimers. Second virial coefficients from light scattering are positive, but the variation of the interpenetration function, ψ, with molecular weight and the friction coefficient, ko, obtained from the concentration dependence of the diffusion coefficient suggests that chloroform is not a particularly good solvent for the hyperbranched polyester and that the molecules are soft and penetrable with little spherical nature. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1339–1351, 2003  相似文献   

19.
We investigated the crystallization growth of isotactic polypropylene under carbon dioxide (CO2) at various CO2 pressures and temperatures by in situ observation with a digital high‐fidelity microscope and a specially designed high‐pressure visualized cell. The fibrils within the spherulite were distorted and branched by crystallization under CO2 at pressures higher than 2 MPa, and this suggested the exclusion of CO2 from the growth front of the fibrils. The spherulite growth rate (G) at 140 °C increased with the CO2 pressure, attained a maximum value around 0.3 MPa, and then decreased. Above 6 MPa, it became slower than that under air at the ambient pressure. An analysis of the crystallization kinetics by the Hoffman–Lauritzen theory revealed that the pressure dependence of G could be ascribed to the change in the transportation rate of crystallizable molecules (βg) with pressure; that is, βg increased and then decreased with pressure. The increase in βg at a low pressure was caused by the plasticizing effect of CO2, whereas the decrease in βg at a high pressure was due to the exclusion of CO2 from the crystal growth front. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1565–1572, 2004  相似文献   

20.
Novel X‐type polyurethane 5 containing 4‐(2′,2′‐dicyanovinyl)‐6‐nitroresorcinoxy groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone, was prepared and characterized. Polyurethane 5 is soluble in common organic solvents such as acetone and N,N‐dimethylformamide. It shows thermal stability up to 280 °C from thermogravimetric analysis with a glass transition temperature (Tg) obtained from differential scanning calorimetry thermogram of around 120 °C. The second harmonic generation (SHG) coefficient (d33) of poled polymer film at 1064‐nm fundamental wavelength is around 6.12 × 10?9 esu. The dipole alignment exhibits a thermal stability even at 5 °C higher than Tg, and there was no SHG decay below 125 °C due to the partial main chain character of the polymer structure, which is acceptable for NLO device applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号