共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101 相似文献
3.
Poly(propylene)/clay nanocomposites were prepared by melt intercalation, using pristine montmorillonite (MMT), hexadecyl trimethyl ammonium bromide (C16), poly(propylene) (PP) and maleic acid (MA) modified PP (MAPP), The nanocomposites structure is demonstrated using X‐ray diffraction (XRD) and high resolution electronic microscopy (HREM). Our purpose is to provide a general concept for manufacturing polymer nanocomposites by melt intercalation starting from the pristine MMT. We found different kneaders (twin‐screw extruder or twin‐roll mill) have influence on the morphology of the PP/clay nanocomposites. Thermogravimetric analysis (TGA) shows that the thermal stability of PP/clay nanocomposites has been improved compared with that of pure PP. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003 相似文献
5.
Chong Min Koo Jong Hyun Kim Ki Hyun Wang In Jae Chung 《Journal of Polymer Science.Polymer Physics》2005,43(2):158-167
Polypropylene‐layered silicate nanocomposites consisting of three components—pure polypropylene, maleated polypropylene, and organically modified silicate—were prepared by the melt‐intercalation method to investigate melt‐extensional properties such as melt strength, neck‐in test, and orientation behavior. The nanocomposites showed an enhanced tensile modulus, enhanced storage modulus, much enhanced melt tension, and reduced neck‐in during the melt processing as compared with neat polymer. The uniaxial drawing induced the silicate surface to align parallel to the sheet surface. The c and a* axes of the polypropylene crystals were bimodally oriented to the flow direction, and the b axes were oriented to the thickness direction. The bimodal orientation of the polypropylene crystal was enhanced with the concentration of silicates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 158–167, 2005 相似文献
6.
Wenge Zheng Xuehong Lu Cher Ling Toh Tong Hua Zheng Chaobin He 《Journal of Polymer Science.Polymer Physics》2004,42(10):1810-1816
The effects of clay on polymorphism of polypropylene (PP) in PP/clay nanocomposites (PPCNs) under various thermomechanical conditions were studied. In extruded PP and PPCN pellet samples, only α-phase crystallites existed, as they were prepared by rapidly cooling the melt extrudates to room temperature. Under compression, β-phase crystallites can develop in neat PP under various thermal conditions, of which isothermal crystallizing at 120 °C gave the highest content of β-phase crystallites. In contrast, no β-phase crystallite was detected in the PPCN samples prepared under the same conditions. This indicated that clay significantly inhibits the formation of β-phase crystallites. The likely reason is that the presence of clay in PPCNs greatly sped up the crystallization process of the α phase, whereas it had an insignificant effect on the crystallization rates of the β phase. The results also showed that clay may slightly promote the formation of γ-phase PP crystallites in PPCNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1810–1816, 2004 相似文献
7.
Huaili Qin Shimin Zhang Chungui Zhao Mingshu Yang 《Journal of Polymer Science.Polymer Physics》2005,43(24):3713-3719
The thermal degradation kinetics of polypropylene/clay microcomposites and nanocomposites were studied by thermogravimetric analysis. In comparison with pure polypropylene, the reaction order of the degradation of the composites became zero‐order, and the activation energy increased dramatically. The zero‐order kinetics were associated with the acidic sites (H+) created on the clay layers, whereas the increase in the activation energy was coupled with the shielding effect of clay. The kinetic analysis could provide additional mechanistic clues concerning the thermal stability and flammability of polymer/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3713–3719, 2005 相似文献
8.
Structural and morphological studies on the deformation behavior of polypropylene/multi‐walled carbon nanotubes nanocomposites prepared through ultrasound‐assisted melt extrusion process 下载免费PDF全文
José M. Mata‐Padilla Carlos A. Ávila‐Orta Francisco J. Medellín‐Rodríguez Ernesto Hernández‐Hernández Rosa M. Jiménez‐Barrera Víctor J. Crúz‐Delgado Janett Valdéz‐Garza Silvia G. Solís‐Rosales Adriana Torres‐Martínez Myriam Lozano‐Estrada Enrique Díaz‐Barriga Castro 《Journal of Polymer Science.Polymer Physics》2015,53(7):475-491
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491 相似文献
9.
Luljeta Raka Andrea Sorrentino Gordana Bogoeva‐Gaceva 《Journal of Polymer Science.Polymer Physics》2010,48(17):1927-1938
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010 相似文献
10.
Hiroyoshi Nakajima Katsuhiro Yamada Yuki Iseki Satoru Hosoda Ayako Hanai Yasunori Oumi Toshiharu Teranishi Tsuneji Sano 《Journal of polymer science. Part A, Polymer chemistry》2003,41(24):3324-3332
Polypropylene (PP)/Ti-MCM-41 nanocomposites were prepared by isospecific propylene polymerization with Ti-MCM-41/Al(i-C4H9)3 catalyst. The cross polarization/magic angle spinning (CP/MAS) 13C NMR spectrum of the composite was similar to that of the conventional isotactic PP, and the decrease in the pore volume of Ti-MCM-41 in the nanocomposites, as measured by N2 adsorption, was consistent with the value calculated from the weight loss in the thermogravimetric analysis (TGA) curve; both these facts attest to propylene polymerization within the mesopores of Ti-MCM-41. Alkali treatment followed by extraction with o-dichlorobenzene allows us to extract the confined PP out of the Ti-MCM-41 mesopores. Although the PP/Ti-MCM-41 nanocomposites do not exhibit a crystalline melting point, the same PP when extracted from the mesopores showed a clear melting point at 154.7 °C; this indicates that the crystallization of PP confined in mesopores is strongly hindered. For the PP polymerized within the confinement, the molecular weight (Mw) and molecular weight distribution (Mw/Mn) were 84,000 and 4.3, respectively; these values were considerably smaller than those of the PP polymerized concurrently outside the Ti-MCM-41 mesopores (Mw = 200,000–450,000, Mw/Mn = 40–75). Therefore, the confinement also has a marked effect on the molecular weight of the PP. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3324–3332, 2003 相似文献
11.
Xin Liu Aihua He Kai Du Charles C. Han 《Journal of Polymer Science.Polymer Physics》2009,47(22):2215-2225
Highly exfoliated isotactic‐polypropylene/alkyl‐imidazolium modified montmorillonite (PP/IMMT) nanocomposites have been prepared via in situ intercalative polymerization. TEM and XRD results indicated that the obtained composites were highly exfoliated PP/IMMT nanocomposites and the average thickness of IMMT in PP matrix was less than 10 nm, and the distance between adjacent IMMT particles was in the range of 20–200 nm. The isothermal crystallization kinetics of highly exfoliated PP/IMMT nanocomposites were investigated by using differential scanning calorimeter(DSC) and polarized optical microscope (POM). The crystallization half‐time t1/2, crystallization peak time tmax, and the Avrami crystallization rate constant Kn showed that the nanosilicate layers accelerate the overall crystallization rate greatly due to the nucleation effect, and the crystallization rate was increased with the increase in MMT content. Meanwhile, the crystallinity of PP in nanocomposites decreased with the increase in clay content which indicated the PP chains were confined by the nanosilicate layers during the crystallization process. Although the well‐dispersed silicate layers did not have much influence on spherulites growth rate, the nucleation rate and the nuclei density increased significantly. Accordingly, the spherulite size decreased with the increase in MMT content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2215–2225, 2009 相似文献
12.
Poly(propylene) (PP)/PP grafted styrene‐butadiene rubber (PP‐g‐SBR) nanocomposite was prepared by blending PP with PP‐g‐SBR using dynamical photografting. The crystal morphological structure, thermal behavior, and mechanical properties of PP/PP‐g‐SBR nanocomposites have been studied by photoacoustic Fourier transform infrared spectroscopy (PAS‐FT‐IR), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and mechanical measurements. The data obtained from the mechanical measurements show that the PP‐g‐SBR as a modifier can considerably improve the mechanical properties of PP/PP‐g‐SBR nanocomposites, especially for the notched Izod impact strength (NIIS). The NIIS of the nanocomposite containing 2 wt% PP‐g‐SBR measured at 20°C is about 2.6 times that of the control sample. The results obtained from PAS‐FTIR, WAXD, SEM, and DSC measurements revealed the enhanced mechanism of impact strength of PP/PP‐g‐SBR nanocomposites as follows: (i) the β‐type crystal of PP formed and its content increased with increasing the photografting degree of PP‐g‐SBR; (ii) the size of PP‐g‐SBR phase in the PP/PP‐g‐SBR nanocomposites obviously reduced and thus the corresponding number of PP‐g‐SBR phase increased with increasing the photografting degree of PP‐g‐SBR. All the earlier changes on the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of PP at low temperature. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
13.
The multiwalled carbon nanotubes/polypropylene nanocomposites (PP/CNTs) were prepared by melt mixing using maleic anhydride grafted polypropylene (mPP) as the compatibilizer. The effect of mPP on dispersion of CNTs was then studied using the tool of rheology, aiming at relating the viscoelastic behaviors to the mesoscopic structure of CNTs. To further explore the kinetics of hybrid formation, a multilayered sample with alternatively superposed neat mPP and binary PP/CNTs microcomposites (without addition of mPP) sheets was prepared and experienced dynamic annealing in the small amplitude oscillatory shear flow. The results show that melt blending CNTs with PP can only yield the composites with microscale dispersion of CNTs, while adding mPP promotes nanoscale dispersion of CNTs as smaller bundles or even as individual nanotubes, reducing percolation threshold as a result. However, the values of apparent diffusivities of the composites are in same order with that of self‐diffusion coefficients of the neat PP, indicating that the presence of detached CNTs nearly does not inhibit PP chain motion. Hence, the activation energy of hybrid formation is close to the self‐diffusion of PP. This also indicates that although addition of mPP can improve the compatibility between CNTs and PP thermodynamically, those dynamic factors, such as shear flow, however, may be the dominant role on hybrid formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 608–618, 2009 相似文献
14.
Giuliana Gorrasi Loredana Tammaro Mariarosaria Tortora Vittoria Vittoria Dirk Kaempfer Peter Reichert Rolf Mülhaupt 《Journal of Polymer Science.Polymer Physics》2003,41(15):1798-1805
Isotactic polypropylene nanocomposites were obtained by the melt blending of polypropylene‐graft‐maleic anhydride and organophilic layered silicate (OLS) consisting of synthetic fluorohectorite modified by cation exchange with protonated octadecylamine. The composition of the inorganic clay was varied between 2.5 and 10 wt %, and films of the composites were obtained via hot‐press molding. X‐ray analysis showed that nanocomposites in which silicate layers were either delaminated or ordered as in an intercalated structure were obtained. The elastic modulus of the samples was higher than that of the pure polymer over a wide temperature range and increased with increasing inorganic content. The transport properties, sorption and diffusion, were measured for two organic vapors, dichloromethane and n‐pentane. For both vapors, the sorption was not very different from that of the pure polymer, whereas the zero‐concentration diffusion parameter strongly decreased with increasing OLS content. Therefore, the permeability, that is, the product of sorption and diffusion, decreased for both vapors as a result of the decreased value of the diffusion parameter. The decrease was higher for the less interacting n‐pentane. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1798–1805, 2003 相似文献
15.
Marcéo A. Milani Raul Quijada Nara R. S. Basso Ana P. Graebin Griselda B. Galland 《Journal of polymer science. Part A, Polymer chemistry》2012,50(17):3598-3605
In this work, the synthesis of polypropylene (PP)/graphene nanosheet (GNS) nanocomposites by in situ polymerization using metallocene catalysts was studied. Initial reactions were performed using rac‐Et(Ind)2ZrCl2 and rac‐Me2Si(Ind)2ZrCl2 catalysts to select the best one to obtain good molecular weight, thermal properties, and tacticity. Subsequently, PP nanocomposites with different loadings of GNS were obtained. GNS from two different sources [Graphite Nacional (GN) and Graphite Aldrich (GA)] have been used, and the differences between the obtained nanocomposites were evaluated. The GNS and nanocomposites were studied by scanning electronic microcopy, transmission electronic microcopy, and X‐ray diffraction. They showed that the GN nanosheets had lower crystal size and diameter than the GA nanosheets and dispersed better in the PP matrix. Differential scanning calorimetry analyses of both types of nanocomposites showed an increase in the crystallization temperature with increasing graphite loading. The polymeric materials were also characterized by GPC, thermogravimetric analysis, and 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
16.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
17.
This study investigates the influence of nylon‐6 (PA‐6) and ethylene‐vinyl acetate copolymer (EVA) alloy/clay nanocomposites on the properties of the flame‐retardant (FR) poly(propylene). Cone calorimetry and scanning electron microscopy (SEM) techniques were used to investigate the effect of PA‐6 and EVA alloy nanocomposites on the fire properties and dispersion of intumescent flame‐retardants (IFRs). The experimental results show that PA‐6 and EVA alloy nanocomposites improve the fire and mechanical properties of the FR poly(propylene). It is also shown that the improvement of the properties mainly depends on the weight ratio of PA‐6 and EVA in the alloys. The probable mechanisms are discussed in this paper. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
18.
A method based on Fourier transform infrared (FTIR) transmission spectra is proposed to measure the crystallinity of isotactic polypropylene (iPP) samples. The method parameters were tuned as compared with wide‐angle X‐ray scattering measurements performed on test samples characterized by different crystallinity values obtained by solidification of thin iPP films under several cooling rates in a homemade device. The FTIR dichroic ratio measurements were adopted to measure crystalline and average Hermans' orientation factors of iPP samples obtained by film casting. The crystalline orientation measurement method was validated as compared with the birefringence measurement. The techniques were successfully used in real time during some film‐casting runs with a suitably modified FTIR system made of a spectrometer equipped with two optical guidelines and an external detector. Real‐time measurements are reported and discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 998–1008, 2003 相似文献
19.
Antonio Motori Gian Carlo Montanari Andrea Saccani Francesca Patuelli 《Journal of Polymer Science.Polymer Physics》2007,45(6):705-713
The direct‐current and alternating‐current electrical behavior of nanocomposites, formed by isotactic polypropylene partially modified with maleic anhydride and filled with different amounts of modified synthetic clay, has been studied; moreover, the conduction mechanisms and the relaxation processes that take place in the materials have been investigated. The nanocomposites containing small clay contents exhibit direct‐current insulating properties comparable to or even higher than those observed in the polymeric matrix. However, as the synthetic clay content increases, the ionic contribution to conductivity becomes considerable. The nanocomposites also show a slightly higher permittivity and loss factor than the host material because of the appearance of a thermally activated relaxation process in the frequency range of 10?2 to 102 Hz at the investigated temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 705–713, 2007 相似文献
20.
Bruce X. Fu Ling Yang Rajesh H. Somani Steven X. Zong Benjamin S. Hsiao Shawn Phillips Rusty Blanski Patrick Ruth 《Journal of Polymer Science.Polymer Physics》2001,39(22):2727-2739
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001 相似文献