首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The main drawback with Roe's approximate Riemann solver is that non-physical expansion shocks can occur in the vicinity of sonic points. Previous work aimed at enforcing the entropy condition is based on the representation of sonic rarefaction waves. We propose a new non-parameterized approach which is based on a nonlinear Hermite interpolation of an approximate flux function and the exact resolution of non convex scalar Riemann problems. Convergence and consistency with the entropy condition are proved for scalar convex conservation laws with arbitrarily large initial data. When considering strictly hyperbolic systems of conservation laws, consistency of the resulting scheme with the entropy condition is also proved for initial data sufficiently close to a constant. Numerical results on a one-dimensional shock-tube and a two-dimensional supersonic forward facing step confirm our theoretical results. Received March 1, 1993 / Revised version received August 26, 1994  相似文献   

2.
We consider scalar balance laws with a dissipative source term. The flux function may be discontinuous with respect to both the space variable x and the unknown quantity u. We formulate the definition of entropy weak solutions and provide existence and uniqueness to the considered problem. The problem is formulated in the framework of multi-valued mappings. The notion of entropy measure-valued solutions is used to prove the so-called contraction principle and comparison principle.  相似文献   

3.
Summary We discuss semi-discrete three-point finite difference methods for the numerical solution of system of conservation laws which are second order accurate in space in the sense of truncation error. Particular discretizations of the numerical entropy flux associated with such schemes are studied clarifying the importance of this discretization with regard to the production of numerical entropy. Using a numerical entropy flux constructed in a canonical way we prove that a wide class of finite difference methods cannot satisfy a discrete entropy inequality. Together with a well known result of Schonbek concerning Lax-Wendroff type schemes our result indicates a strong relationship between entropy production and oscillations in numerical solutions.The research reported here was supported by a grant from the Stiftung Volkswagenwerk, Federal Republic of Germany. It is a part of the doctoral thesis of the above author, Universität Stuttgart, 1991.  相似文献   

4.
We present a relaxation system for ideal magnetohydrodynamics (MHD) that is an extension of the Suliciu relaxation system for the Euler equations of gas dynamics. From it one can derive approximate Riemann solvers with three or seven waves, that generalize the HLLC solver for gas dynamics. Under some subcharacteristic conditions, the solvers satisfy discrete entropy inequalities, and preserve positivity of density and internal energy. The subcharacteristic conditions are nonlinear constraints on the relaxation parameters relating them to the initial states and the intermediate states of the approximate Riemann solver itself. The 7-wave version of the solver is able to resolve exactly all material and Alfven isolated contact discontinuities. Practical considerations and numerical results will be provided in another paper.  相似文献   

5.
Summary. For the high-order numerical approximation of hyperbolic systems of conservation laws, we propose to use as a building principle an entropy diminishing criterion instead of the familiar total variation diminishing criterion introduced by Harten for scalar equations. Based on this new criterion, we derive entropy diminishing projections that ensure, both, the second order of accuracy and all of the classical discrete entropy inequalities. The resulting scheme is a nonlinear version of the classical Van Leer's MUSCL scheme. Strong convergence of this second order, entropy satisfying scheme is proved for systems of two equations. Numerical tests demonstrate the interest of our theory. Received March 28, 1995 / Revised version received June 17, 1995  相似文献   

6.
Summary. An optimal control problem for impressed cathodic systems in electrochemistry is studied. The control in this problem is the current density on the anode. A matching objective functional is considered. We first demonstrate the existence and uniqueness of solutions for the governing partial differential equation with a nonlinear boundary condition. We then prove the existence of an optimal solution. Next, we derive a necessary condition of optimality and establish an optimality system of equations. Finally, we define a finite element algorithm and derive optimal error estimates. Received March 10, 1993 / Revised version received July 4, 1994  相似文献   

7.
The examination of the particle model of compressible fluids that has been developed by the author [Numer. Math. (1997) 76: 111–142] and that has recently been extended to particles of variable size [Numer. Math. (1999) 82: 143–159], is continued. It is shown that, in the limit of particle sizes tending to zero, both the mass density and the mass flux density and the entropy density and the entropy flux density converge in the weak sense and satisfy the corresponding conservation laws. To incorporate entropy generation in shocks, a new kind of viscous force is introduced. Received November 22, 1996 / Revised version received March 30, 1998  相似文献   

8.
Consider the system of Euler-Poisson as a model for the time evolution of gaseous stars through the self-induced gravitational force. We study the existence, uniqueness and multiplicity of stationary solutions for some velocity fields and entropy function that solve the conservation of mass and energy a priori. These results generalize the previous works on the irrotational or the rotational gaseous stars around an axis, and then they hold in more general physical settings. Under the assumption of radial symmetry, the monotonicity properties of the radius of the gas with respect to either the strength of the velocity field or the center density are also given which yield the uniqueness under some circumstances.  相似文献   

9.
Numerical analysis of oscillations in multiple well problems   总被引:5,自引:0,他引:5  
Summary. Variational problems which fail to be convex occur often in the study of ordered materials such as crystals. In these problems, the energy density for the material has multiple potential wells. In this paper, we study multiple well problems by first, determining the analytic properties of energy minimizing sequences and then, by estimating the continuous problem by an approximation using piecewise linear finite elements. We show that even when there is no minimizer of the energy, the approximations still take on a predictable structure. Received May 18, 1994  相似文献   

10.
We deal with a single conservation law with discontinuous convex–concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine–Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine–Hugoniot condition by a generalized Rankine–Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L1L1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented.  相似文献   

11.
Summary. One approximates the entropy weak solution u of a nonlinear parabolic degenerate equation by a piecewise constant function using a discretization in space and time and a finite volume scheme. The convergence of to u is shown as the size of the space and time steps tend to zero. In a first step, estimates on are used to prove the convergence, up to a subsequence, of to a measure valued entropy solution (called here an entropy process solution). A result of uniqueness of the entropy process solution is proved, yielding the strong convergence of to{\it u}. Some on a model equation are shown. Received September 27, 2000 / Published online October 17, 2001  相似文献   

12.
We provide an analog of the Newton–Kantorovich theorem for a certain class of nonsmooth operators. This class includes smooth operators as well as nonsmooth reformulations of variational inequalities. It turns out that under weaker hypotheses we can provide under the same computational cost over earlier works [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] a semilocal convergence analysis with the following advantages: finer error bounds on the distances involved and a more precise information on the location of the solution. In the local case not examined in [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] we can show how to enlarge the radius of convergence and also obtain finer error estimates. Numerical examples are also provided to show that in the semilocal case our results can apply where others [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305] fail, whereas in the local case we can obtain a larger radius of convergence than before [S.M. Robinson, Newton's method for a class of nonsmooth functions, Set-Valued Anal. 2 (1994) 291–305].  相似文献   

13.
Summary. Multilevel Schwarz methods are developed for a conforming finite element approximation of second order elliptic problems. We focus on problems in three dimensions with possibly large jumps in the coefficients across the interface separating the subregions. We establish a condition number estimate for the iterative operator, which is independent of the coefficients, and grows at most as the square of the number of levels. We also characterize a class of distributions of the coefficients, called quasi-monotone, for which the weighted -projection is stable and for which we can use the standard piecewise linear functions as a coarse space. In this case, we obtain optimal methods, i.e. bounds which are independent of the number of levels and subregions. We also design and analyze multilevel methods with new coarse spaces given by simple explicit formulas. We consider nonuniform meshes and conclude by an analysis of multilevel iterative substructuring methods. Received April 6, 1994 / Revised version received December 7, 1994  相似文献   

14.
Summary. A two-level additive Schwarz preconditioner is developed for the systems resulting from the discretizations of the plate bending problem by the Morley finite element, the Fraeijs de Veubeke finite element, the Zienkiewicz finite element and the Adini finite element. The condition numbers of the preconditioned systems are shown to be bounded independent of mesh sizes and the number of subdomains in the case of a generous overlap. Received February 1, 1994 / Revised version received October 24, 1994  相似文献   

15.
Summary. In this paper we present and analyse certain discrete approximations of solutions to scalar, doubly nonlinear degenerate, parabolic problems of the form under the very general structural condition . To mention only a few examples: the heat equation, the porous medium equation, the two-phase flow equation, hyperbolic conservation laws and equations arising from the theory of non-Newtonian fluids are all special cases of (P). Since the diffusion terms a(s) and b(s) are allowed to degenerate on intervals, shock waves will in general appear in the solutions of (P). Furthermore, weak solutions are not uniquely determined by their data. For these reasons we work within the framework of weak solutions that are of bounded variation (in space and time) and, in addition, satisfy an entropy condition. The well-posedness of the Cauchy problem (P) in this class of so-called BV entropy weak solutions follows from a work of Yin [18]. The discrete approximations are shown to converge to the unique BV entropy weak solution of (P). Received November 10, 1998 / Revised version received June 10, 1999 / Published online June 8, 2000  相似文献   

16.
A fully discrete scheme for diffusive-dispersive conservation laws   总被引:1,自引:0,他引:1  
Summary.   We introduce a fully discrete (in both space and time) scheme for the numerical approximation of diffusive-dispersive hyperbolic conservation laws in one-space dimension. This scheme extends an approach by LeFloch and Rohde [4]: it satisfies a cell entropy inequality and, as a consequence, the space integral of the entropy is a decreasing function of time. This is an important stability property, shared by the continuous model as well. Following Hayes and LeFloch [2], we show that the limiting solutions generated by the scheme need not coincide with the classical Oleinik-Kruzkov entropy solutions, but contain nonclassical undercompressive shock waves. Investigating the properties of the scheme, we stress various similarities and differences between the continuous model and the discrete scheme (dynamics of nonclassical shocks, nucleation, etc). Received November 15, 1999 / Revised version received May 27, 2000 / Published online March 20, 2001  相似文献   

17.
The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier–Stokes equations of a viscous compressible heat-conducting gas.  相似文献   

18.
Summary. In recent years, it has been shown that many modern iterative algorithms (multigrid schemes, multilevel preconditioners, domain decomposition methods etc.) for solving problems resulting from the discretization of PDEs can be interpreted as additive (Jacobi-like) or multiplicative (Gauss-Seidel-like) subspace correction methods. The key to their analysis is the study of certain metric properties of the underlying splitting of the discretization space into a sum of subspaces and the splitting of the variational problem on into auxiliary problems on these subspaces. In this paper, we propose a modification of the abstract convergence theory of the additive and multiplicative Schwarz methods, that makes the relation to traditional iteration methods more explicit. The analysis of the additive and multiplicative Schwarz iterations can be carried out in almost the same spirit as in the traditional block-matrix situation, making convergence proofs of multilevel and domain decomposition methods clearer, or, at least, more classical. In addition, we present a new bound for the convergence rate of the appropriately scaled multiplicative Schwarz method directly in terms of the condition number of the corresponding additive Schwarz operator. These results may be viewed as an appendix to the recent surveys [X], [Ys]. Received February 1, 1994 / Revised version received August 1, 1994  相似文献   

19.
Summary. We consider the positivity preserving property of first and higher order finite volume schemes for one and two dimensional Euler equations of gas dynamics. A general framework is established which shows the positivity of density and pressure whenever the underlying one dimensional first order building block based on an exact or approximate Riemann solver and the reconstruction are both positivity preserving. Appropriate limitation to achieve a high order positivity preserving reconstruction is described. Received May 20, 1994  相似文献   

20.
Summary. This paper is devoted to the study of the finite volume methods used in the discretization of conservation laws defined on bounded domains. General assumptions are made on the data: the initial condition and the boundary condition are supposed to be measurable bounded functions. Using a generalized notion of solution to the continuous problem (namely the notion of entropy process solution, see [9]) and a uniqueness result on this solution, we prove that the numerical solution converges to the entropy weak solution of the continuous problem in for every . This also yields a new proof of the existence of an entropy weak solution. Received May 18, 2000 / Revised version received November 21, 2000 / Published online June 7, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号