首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract— A mutant of Chlamydomonas reinhardtii (NL–11) isolated from a wild type (137c+) was inactivated in the light in the presence of methionine at concentrations where the wild type was not inactivated. The inactivation was suppressed by either catalase or superoxide dismutase (SOD). Light-induced H2O2 formation and nitroblue tetrazolium (NBT) reduction inNL–11 were greater than those in the wild type. Methionine stimulated both the H2O2 formation and the NBT reduction inNL–11 as well as the wild type. The light-induced NBT reduction inNL–11 in the presence of methionine was partially suppressed by externally added SOD suggesting the participation of O-2. These results suggest that the hypersensitivity ofNL–11 to methionine in the light is due to stimulated formation of H2O2 and O-2.  相似文献   

2.
Abstract— We studied the magnitude and the rise kinetics of proton release into the interior of thylakoids by flash spectrophotometty with neutral red as pH indicator. Excitation of dark-adapted thylakoids by a series of between 4 and 11 flashes produced a complex pattern of proton release into the thylakoid lumen. Proton release upon each flash was time resolved.
A slow component of proton release oscillated weakly in magnitude with period of two as function of flash number. It exhibited a half-rise time of approximately 20 ms from the very first flash on, and it was abolished by inhibitors of plastohydroquinone oxidation. This component was attributed to the oxidation of plastohydroquinone by PS I via the Cytb6/f complex.
Additionally, rapid and multiphasic proton release was observed with half-rise times of less than 2 ms which exhibited a pronounced and damped oscillation with period of four as function of flash number. This rapid proton release was attributed to water oxidation. A detailed kinetic analysis suggested that proton release occurred with the following stoichiometry and with the following half-rise times during the transitions S1 Si+1 of water oxidation: 1 H+(250 μs, S01): 0 H+(S1→ S2):1 H+(200 μs, S2→S3):2 H+(1.2 ms, S3→ S4→ S0) . Proton release and proton rebinding upon oxidation and reduction of the intermediate electron carrier Z, respectively, may have influenced the kinetics of the respective proton yields but not the stoichiometric pattern.  相似文献   

3.
Abstract— We report the detection of a weak near-infrared light emission originating from 8 nM singlet molecular oxygen (1O2) produced in a mixture of 1 m M hypochlorite (OC1-) and 8 n M hydrogen peroxide (H2O2). The measurements were made with a highly sensitive detection system for ultraweak light emission in the 1.0-1.5 μm wavelength region. The emission intensity exhibited linear dependence for H2O2 concentrations in the range of 8-670 n M . The mixture containing a lower concentration (33 μ M ) of OCl- pseudocontinuously emitted near-infrared light for 5 s. The rate constant for 1O2 production obtained from the kinetic analysis agrees with that previously reported. Our results demonstrate the possibility of measuring very low concentrations of 1O2 in a OCi-/H2O2 mixture as well as 1O2 production in intact living systems.  相似文献   

4.
A consensus has emerged in the recent literature on the fact that the UV difference spectrum of the first oxidation step (S0→ S1) of the photosynthetic oxygen-evolving complex is significantly different and generally smaller than the spectra of the higher oxidation steps (S0→ S1and S2→ S3). Discrepancies still persist, however, notably in the 300 nm region where the S0→ S1 change was either reported to be markedly smaller than the other changes, or, at variance, to have a similar amplitude. A novel approach is proposed here for estimating the ratio of these changes, requiring no estimate of the Kok model parameters, such as the initial S0/S1ratio, or damping coefficients. This was achieved by comparing the absorption difference between two fully deactivated states, differing only in their S0/S1, distribution, with the flash-induced changes measured from these states. The results show that, at two wavelengths around 300 nm, the S0→ S1 change is at least 4 times, and probably 5–6 times smaller than the S0→ S1change.  相似文献   

5.
Abstract— The photolysis of aqueous solutions of cis -[Cr(C2O4)2(H2O)2]- at 254 nm and pH 4 produced CO2 and H2 in nearly equal yields. The quantum yield of hydrogen, φ2, increased by 9% and the yield of carbon dioxide, φ, by 65% as the pH was lowered from 4 to I. The total gas yield, φgas, decreased in the presence of added oxalate or chromium (II) ions and when the light intensity was lowered. The gas yield in D2O was appreciably higher than in H2O. The variation of φgas with pH (D) and with added oxalate ion was roughly parallel in the two liquid media. The gas yield increased in the series:
A tentative mechanism is suggested to explain the results.  相似文献   

6.
HYDROGEN AND OXYGEN PHOTOPRODUCTION BY TITANATE POWDERS   总被引:1,自引:0,他引:1  
Abstract— Uncoated powders of TiO2 or SrTiO3 did not produce H2 or O2 on UV irradiation of aqueous suspensions of the powders. TiO2 powders coated with platinum or rhodium photoproduced H2 on irradiation (effective wavelengths 334 and 366 nm) and the reaction was stimulated by catalytic quantities of methyl viologen. The turnover numbers for H2 production relative to TiO2 were very low suggesting that the powders were not acting catalytically. Hydrogen production was never stoichiometric with respect to TiO2 and the kinetics of H2 production were first order, not zero order as would be expected for catalytic photolysis of water. Oxygen was never detected and it appears that H2 did not arise from water photolysis but rather from oxidation of reduced sites in TiO2. A rhodium-coated SrTiO3 powder prepared photochemically produced both H2 and O2 on irradiation but the turnover numbers were very low. A Rh-SrTiO3 powder prepared thermally showed higher turnover numbers for H2 photoproduction and may be acting catalytically. However, little O2 was detected with this powder. When the turnover numbers for the different titanate powders were expressed with respect to the number of surface monolayer hydroxyl groups calculated from the surface area of the powders, some turnover numbers greater than one were obtained.  相似文献   

7.
Abstract— The absorption and fluorescence spectra of indole-4-carboxylic acid in various solvents have indicated that the -COOH group is more planar with respect to the indole ring in the first excited singlet state (S1) than in the ground (S0) state. Relatively large Stokes' shifts indicate that polarisability and dipole moment of the molecule are increased predominantly upon excitation. Prototropic reactions in the S0 and S1 states are the same. The -COO- and -COOH+2 groups are not coplanar in the S0, but coplanar in the S1 state. pH-dependent fluorescence spectra have revealed that both protonation and deprotonation of the -COOH group increase the basicity of the molecule upon excitation.  相似文献   

8.
Abstract— The role of chloride in photosynthetic oxygen evolution was investigated by means of thermoluminescence measurements. It was found that chloride depletion in isolated chloroplasts almost completely abolished the B1 thermoluminescence band (S3QB recombination) but diminished only slightly the amplitude of the B2 band (S2QB recombination). The B2 band could be excited to full intensity by the first flash of a flash series and subsequent flashes caused no further change in the amplitude of the band. These observations suggest a block in the S2→S3 transition of the water-splitting system in chloride-depleted chloroplasts. Readdition of chloride provided evidence that the inhibitory effect of chloride removal is reversible.  相似文献   

9.
Abstract— As previously demonstrated, there is a considerable increase in the photodynamic activity of anthraquinone-sulphonic acid on the addition of ethylene glycol, glycerol and sugars in concentrations of the order of 0.4 M . This system exhibits cytostatic activity. With H2O2 at higher concentrations there is also formation of aldehydes in approximately equivalent yields as follows:
R.CH2OH+Q → QH2+R.CHO
QH2+O2→ Q+H2O2
In accordance with the recent results of Warburg this accounts for the fundamental importance of glyceraldehyde in cancer research.
Our results on the irradiation of Proteus vulgaris SG2 in buffered medium with the addition of glycerin to anthraquinone-sulphonic acid show the existence of a similar cytostatic effect. One hour's irradiation with visible light reduces the cell count by about 50 per cent.  相似文献   

10.
Abstract— The yield of the primary products of the liquid water photolysis at 1236 and 1470 Å is reported. It was found that besides the dissociation of the excited water molecules into H and OH radicals probably eaq is also formed. The H and OH radicals were scavenged by means of formate, and the eaq together with a part of H2O* by adding carbon dioxide. The quantum yields determined at 1236 Å, are: Φ(H, OH) = 1.03 & 0.02, 0.06 <Φ( eaq , H2O*) < 0.12 and at 1470 Å,: Φ(H, OH)=0.72±0.02, 0.037 < Φ( eaq , H2O*) <0.075. The quantum yield of high purity water at 1849 Å in the absence of any scavengers is Φ(H, OH)=0.022. Previously published data by us for 1849 Å are also given: Φ(H, OH)=0.33 ± 0.01 and 0.02 < Φ ( eaq H2O*) < 0.04. Reaction mechanisms are proposed.  相似文献   

11.
Exposure of Dulbecco's modified Eagle's tissue culture medium to visible fluorescent light generated photoproducts toxic to human cells in culture. Toxicity manifested at the chromosome level was increased chromosome aberrations and sister chromatid exchanges in cells exposed to the photoproducts. Hydrogen peroxide (H2O2), a major photoproduct, induced SCE but failed to increase chromosome aberrations. Pure H2O2, or the H2O2 generated in light-exposed medium, was necessary and sufficient for inducing all the increase in SCE. However, H2O2 was necessary but insufficient to cause most of the chromosome aberrations. Only when acting synergistically with other photoproducts did H2O, induce extensive chromosome aberrations. The relatively high cell densities at near confluence levels used in these experiments were less sensitive to light-induced effects, nevertheless the entire light exposure dosage range effected photoproduct production adequate for inducing SCE and chromosome aberrations. Thus, mammalian tissue and cell culture media can receive sufficient dosage from fluorescent lights illuminating rooms and culture hoods for generation of photoproducts causing gross and insidious SCE and chromosome alterations.  相似文献   

12.
Abstract— This study focuses on the fact that the chemiluminescence in the visible region is emitted from the H2O2/gallic acid/ horseradish peroxidase (HRP) and the H2O2/gallic acid acetaldehyde (MeCHO) systems. The concentration dependence of chemiluminescence intensity that led to the different response of HRP and MeCHO toward H2O2 indicates that the photon emission participates with peroxidase activity including an electron transfer reaction. From our experimental results, in this study, we postulated a reaction process for chemiluminescence based on a one-electron redox shuttle from H2O2 by peroxidase. The photon intensity and spectra data from the H2O2/ HRP and the H2O2/MeCHO systems with various cate-chins were not only affected by HRP and MeCHO but also corresponded with the chemical structure of cate-chins. The energy calculated from the spectra is 47–64 kcal/mol. These results suggested that the chemiluminescence of both systems arose from excited carbonyl compounds produced by an intermediate of the alkyl radical and the metal-bound hydroxyl (compound II species). Hydroxyl radical inhibition, showing a notable increase from the gallic acid addition, makes the decay of the hydroxyl form of heme iron the most likely candidate for the chemiluminescence.  相似文献   

13.
Abstract In the presence of the photosensitizer riboflavin at high fluence rates a photoproduct, most probably H2O2, is formed which causes negative phototaxis in the colorless flagellate Polytomella magna . The aim of this study was to find out whether H2O2 is produced in a type I or II reaction. As has been shown, 1O2 quenchers either do not influence the photodynamic action of riboflavin (furfuryl ethanol, DPBF, l -histidine, crocetin) or show slight quenching effects only at very high concentrations ≧ 10−2 M (DABCO, DMF, imidazole). D2O is toxic to P. magna even in 1:1 and 1:2 mixtures with H2O. On the other hand, the quenching effect of 1,4-benzoquinone, highly indicative for the type I pathway, is more than two orders of magnitude stronger than the one of the above mentioned 1O2 quenchers. The results suggest that H2O2 is produced in a type I reaction. Superoxide does not seem to be involved since superoxide dismutase does not diminish the photodynamic effect of riboflavin.  相似文献   

14.
-The pH and H0 dependence of the absorption and fluorescence spectra of isoflavone and 7-hydroxyisoflavone are reported. Isoflavone is fluorescent in acidic solution only, whereas 7-hydroxyisoflavone is fluorescent in all acidity ranges under investigation. Ground and first excited singlet state p K a's have been determined spectrophotometrically and fluorimetrically, respectively. Excited state protolytic equilibration processes via a second order reaction (proton gain) are found to be too slow to compete efficiently with fluorescence. This is deduced from the close agreement between the p K a's of the conjugate acids obtained by absorption and fluorescence titrations. On the other hand, photodissociation of 7-hydroxyisoflavone proceeds faster than its fluorescence decays. The experimental p K a(S1) is in fair agreement with the calculated one. 7-Hydroxyisofiavone forms a phototautomer (or exciplex) in the pH 2 to H0-1 acidity range, which is characterized by its long wavelength emission. Quantum efficiencies are given for isoflavone and 7-hydroxyisoflavone in aqueous solutions of various acidities. Deuteration effects thereon are discussed.  相似文献   

15.
ACTION OF HYDROGEN PEROXIDE ON HUMAN FIBROBLAST IN CULTURE   总被引:6,自引:0,他引:6  
Abstract— Human fibroblasts in culture lose the capacity of proliferating when exposed to hydrogen peroxide in the concentration range of 1 to 10 μ M . The toxicity of H2O2 to xeroderma pigmentosum cells (XP12RO). defective in excision repair of lesions produced by UV-irradiation, was about twice as high as to cells proficient in excision repair (VA13). This compound produces single-strand breaks in intracellular DNA but not in purified DNA. These breaks are in situ physical discontinuities rather than alkali-labile bonds, and their generation occurs at the same extent at 4°C and 37° indicating that they are not produced by an endonuclease. The results favor the hypothesis that H2O2 reacts in the cell producing a radical species which brings about the formation of DNA single-strand breaks. These breaks are effectively repaired by both XP12RO and VA13 fibroblasts. The possible reason for the lethality of H2O2 is discussed.  相似文献   

16.
Abstract— The catalytic action of protohematin was studied during the H2O2-dependent chemiluminescent luminol reaction. In spite of the fact that the catalyst was ultimately inactivated, the average protohematin molecule catalyzed the consumption of about 103 molecules of luminol. The inactivation of catalyst and the initial consumption of luminol were studied during the luminescent reaction with different concentrations of reactants. A scheme accounting for the experimental observations is proposed. The formation of a primary protohematin-H2O2 complex is followed by binding of luminol, resulting in a ternary complex. A nucleophilic attack by a second molecule of H2O2 on the luminol molecule results in light emission from excited aminophthalate via a hypothetical peroxide adduct. The destruction of protohematin occurs via the attack of H2O2 on the porphyrin structure of the protohematin-H2O2 complex. Second order rate constants for the destruction of protohematin, the formation of the luminol complex and the nucleophilic attack of H2O2 are presented.  相似文献   

17.
Abstract— –In the light, isolated spinach thylakoids consumed O2 in the presence of methylviologen, and ascorbate was found to interact with this reaction in various ways. Chelating-resin was used to remove metal impurities from the assay medium. Ascorbate diminished the H202 pool in resin-untreated solutions, while in resin-treated solutions ascorbate had no effect on H2O2 concentrations. A Fenton catalyst (Fe-EDTA) increased O2 uptake in the presence of ascorbate and decreased the amount of O2 recovered by catalase. Ascorbate tripled the rate of the methylviologen-mediated Mehler reaction, and the O2 consumed was liberated to 50% of its original concentration by catalase. Superoxide dismutase reversed the effects of ascorbate on the Mehler reaction rates. These results indicate that ascorbate can stimulate Mehler reactions indirectly by promoting a Fenton-type reaction as well as stimulating Mehler reactions directly by reducing 2O2- to 2H2O2. The promotion of a Fenton-type reaction by ascorbate appears to be the cause of H2O2 depletion in resin-untreated solutions.  相似文献   

18.
Abstract— The accumulation of (J-carotene in the ph/ph + y diploid strain of the smut fungus Ustilago violacea was associated with reduced killing and lower levels of induced mitotic recombination compared to the β-carotene lacking ph/ph+ w strain in response to both incandescent photosensitization and treatment with H202. The ph/ph+ y strain was only slightly more resistant to killing by exogenous toluidine blue (TB) photosensitization. The ph/ph+ y strain exhibited significantly greater levels of survival when exposed to incandescent radiation and 1.5 μ.M TB for 15 min, as well as 3.0. 0.3, 0.03, 0.003% H202 in the dark. The ph/ph+ y strain also exhibited lower levels of mitotic recombination after endogenous TB photosensitization and the latter two H202 treatments. Similar survival results were obtained for the carotene accumulating haploid strain l.C2y and the carotene lacking haploid strain l.C2iv in response to H202 exposure.  相似文献   

19.
Abstract— The bioluminescent oxidation of reduced flavin mononucleotide by bacterial luciferase involves a long-lived flavoenzyme intermediate whose chromophore has been postulated to be the 4a-sub-stituted peroxy anion of reduced flavin. Reaction of long chain aldehyde with this intermediate results in light emission and formation of the corresponding acid. These experiments show that the typical aldehyde-dependent, luciferase-catalyzed bioluminescence can also be obtained starting with FMN and H2O2 instead of FMNH2 and O2. We postulate that the 4a-peroxy anion intermediate is formed directly by attack of H2O2 on FMN. The latter may be bound to luciferase. An enzyme bound intermediate is formed which by kinetic analysis, flavin specificity for luminescence, aldehyde dependence, and bioluminescent emission spectrum appears to be identical with the species generated by reaction of FMNH, and O2 with luciferase. The quantum yield of the H2O2-- and FMN-initiated biolumlnescence is low but can be enhanced by certain metal ions, which also stimulate a chemiluminescent reaction of oxidized flavin with H2O2. The peak of this chemiluminescence. however, appears to be at a shorter wavelength than that (490 nm) of the bioluminescence.  相似文献   

20.
Abstract— Strains of Escherichia coli carrying the four possible combinations of the alleles nur, nur+, uvrAb, and uvrA + were either untreated or pretreated with a sublethal dose of H202 prior to inactivation with NUV radiation. Pretreated cells exhibited a greater resistance to NUV than did untreated cells. Pretreatment with H2O2 did not induce resistance to FUV radiation. The induction of resistance to NUV inactivation by H2O2 pretreatment apparently leads to protection against the damage caused by NUV radiation. Although pretreatment of cells with H202 leads to resistance of such cells to inactivation by H2O2 and NUV, survival of H2O2 treated bacteriophage PI cml clr100 is not enhanced when assayed on H2O2 pretreated E. coli host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号