首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe a rapid, accurate, and convenient method for postsynthetically tuning the optical properties of colloidal photonic crystals. High quality photonic crystal films are first synthesized and then coated iteratively with layers of water-soluble polyelectrolytes. The coating process results in nanometer-scale shifts in the photonic stop band, a process which has been monitored by theoretical modeling. The results suggest a fundamentally different, reproducible layering mechanism inside the confined spaces of the colloidal crystal where polyelectrolyte multilayers are less densely packed.  相似文献   

2.
Noh J  Park S  Boo H  Kim HC  Chung TD 《Lab on a chip》2011,11(4):664-671
A novel solid-state reference electrode was developed by combining nanoporous Pt with polyelectrolyte junction. The polyelectrolyte junction was formed in the microchannel connecting the nanoporous Pt and the sample solution, and had layer-by-layer structure of oppositely charged polyelectrolytes. The layer-by-layer polyelectrolyte junction effectively blocked the mass transport of ions and maintains constant pH environments on the surface of the nanoporous Pt. The assembly of the polyelectrolyte junction and the nanoporous Pt, which produced reportedly a stable open-circuit potential in response to constant pH, exhibited outstanding performance as a solid-state reference electrode (e.g., excellent reproducibility of ±4 mV (n = 5), good long term stability of ±1 mV (for 50 h), and independence of solution environments like pH and ionic strength). A working principle of the solid-state reference electrode with layer-by-layer polyelectrolyte junction was suggested in terms of the roles of each layer and the effect of the neighboring layer. As a demonstrative application of the solid-state reference electrode, a miniaturized chip-type solid-state pH sensor comprised of two nanoporous Pt electrodes and a micro-patterned layer-by-layer polyelectrolyte junction was developed. The solid-state pH sensing chip showed reliable pH responses without liquid junction and successfully worked in a variety of buffers, beverages, and biological samples, showing its potential utility for practical applications. In addition, the solid-state pH sensing chip was integrated in a microfluidic system to be utilized for pH monitoring in microfluidic flow.  相似文献   

3.
The surface of monodisperse silica particles synthesized using the Stober process were coated with a thin layer of polystyrene. Surface charge groups were attached by a grafting polymerization of styrene sulfonate. The resulting highly charged monodisperse silica particles self-assemble into crystalline colloidal arrays (CCA) in deionized water. We polymerized hydroxyethyl methacrylate (HEMA) around the CCA to form a HEMA-polymerized crystalline colloidal array (PCCA). Hydrofluoric acid was utilized to etch out the silica particles to produce a three-dimensional periodic array of voids in the HEMA PCCA. The diffraction from the embedded CCA sensitively monitors the concentration of ethanol in water because the HEMA PCCA shows a large volume dependence on ethanol due to a decreased Flory-Huggins mixing parameter. Between pure water and 40% ethanol the diffraction shifts across the entire visible spectral region. We accurately modeled the dependence of the diffraction wavelength on ethanol concentration using Flory theory. We also fabricated a PCCA (which responds to pH changes in both low and high ionic strength solutions) by utilizing a second polymerization to incorporate carboxyl groups into the HEMA PCCA. We were also able to model the pH dependence of diffraction of the HEMA PCCA by using Flory theory. An unusual feature of the pH response is a hysteresis in response to titration to higher and lower pH. This hysteresis results from the formation of a Donnan potential at high pH which shifts the ionic equilibrium. The kinetics of equilibration is very slow due to the ultralow diffusion constant of protons in the carboxylated PCCA as predicted earlier by the Tanaka group.  相似文献   

4.
Controlled assembly of nanomaterials has been the focus of much research. In contrast, controlled disassembly has not received much attention, even though both processes have been shown to be important in biology. By using a Pb2+-dependent RNA-cleaving DNAzyme, we demonstrate here control of the disassembly of gold nanoparticle aggregates in response to Pb2+. In the process, we show that nanoparticle alignment plays an important role in the disassembly process, with the tail-to-tail configuration being the most optimal, probably because of the large steric hindrance of other configurations. The rate of disassembly is significantly accelerated by using small pieces of DNA to invade the cleaved substrate of the DNAzyme. Investigation of such a controlled disassembly process allows the transformation of previously designed "light-down" colorimetric Pb2+ sensors into "light-up" sensors.  相似文献   

5.
Di-block copolymer polystyrene-block-polymethyl methacrylate (PS-b-PMMA) was used to make patterns over a large area of as grown LEDs. The polymer patterns on LEDs surface could be transferred to the underlying p-GaN, the topmost layer of as grown LEDs by both reactive ion etching (RIE) and photo-enhanced chemical (PEC) etching. Removal of remaining polymer chains results in patterned LEDs which shows higher light extraction efficiency. In our experiment, much higher intensity for patterned LEDs in both photoluminescence (PL) and electroluminescence (EL) data plot were found. Similar improvements were found in I-V and L-I curves for patterned LEDs.  相似文献   

6.
We have developed the first high-diffraction-efficiency two-dimensional (2-D) photonic crystals for molecular recognition and chemical sensing applications. We prepared close-packed 2-D polystyrene particle arrays by self-assembly of spreading particle monolayers on mercury surfaces. The 2-D particle arrays amazingly diffract 80% of the incident light. When a 2-D array was transferred onto a hydrogel thin film showing a hydrogel volume change in response to a specific analyte, the array spacing was altered, shifting the 2-D array diffraction wavelength. These 2-D array photonic crystals exhibit ultrahigh diffraction efficiencies that enable them to be used for visual determination of analyte concentrations.  相似文献   

7.
CdTe quantum dots (QDs), capped with mercaptopropionic acid (MPA), were synthesized and the variation of their fluorescence properties (steady state and lifetime) with pH was assessed in solution and when immobilized in a sol-gel host. Three different sizes of CdTe QDs with excited state lifetimes ranging from 42 to 48 ns and with emission maximum at 540 nm (QD540), 580 nm (QD580) and 625 nm (QD625) were selected. The solution pH affects the maximum emission wavelength (shifts to higher wavelengths of 23, 24 and 27 nm for QD540, QD580 and QD625, respectively), the excited state lifetime and the fluorescence intensity in a reversible way. Linearization of the maximum emission wavelength variation with the pH allows the estimation of an apparent ionization constant (pKa) for each QD: 6.5 ± 0.1 (QD540), 6.1 ± 0.5 (QD580) and 5.4 ± 0.3 (QD625). The variation of the QDs fluorescence properties was further explored using confocal laser scanning microscopy allowing the implementation of a new calibration method for pH imaging in solution. QDs were successfully immobilized on the tip of an optical fiber by dip-coating using sol-gel procedure. The immobilized QDs showed a similar pH behaviour to the one observed in solution and an apparent lifetime of 80, 68 and 99 ns, respectively. The proposed QDs based methodology can be successfully used to monitor pH using wavelength encoded data in imaging and fiber optic sensing applications.  相似文献   

8.
A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest‐packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well‐known thermosensitive monomer, N‐isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 87–105; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20169  相似文献   

9.
With the help of self-assembly, thermal sintering, selective etching techniques and sol-gel process, the non-close packed (ncp) face-centered cubic (fcc) photonic crystals of titanium dioxide (TiO2) hollow spheres connected by TiO2 cylindrical tubes have been fabricated using silica template. The photonic bandgap calculations indicate that the ncp structure of TiO2 hollow spheres was easier to open the pseudogaps than close packed system at the lowest energy.  相似文献   

10.
The asymmetry introduced by a complex or nonspherical basis promotes photonic band gap formation in three-dimensional photonic crystals. However, relatively few techniques have been demonstrated to produce uniform nonspherical colloids for use as photonic crystal bases. Here we expand the menu of basis types with high refractive index by preparing nonspherical zinc sulfide colloids of uniform size and shape. Dimers, trimers, and planar tetramers were precipitated from aqueous solution by the thermal decomposition of thioacetamide in the presence of zinc nitrate, manganese nitrate, and nitric acid. The well-defined morphological types were obtained from suspensions aged for 4-6 h at 26-32 degrees C and then for 20-35 min at 85 degrees C. Stereological techniques were used to analyze SEM images and determine the percentage of each particle class. For example, the quantitative characterization of a particle population prepared at 29 degrees C for 6 h and 85 degrees C for 22 min had the composition 59+/-3% spheres, 31+/-2% dimers, 7+/-1% trimers, 0.4+/-0.2% tetramers, and 2.5+/-0.8% complex clusters (encompasses all other varieties of shape). X-ray diffraction and X-ray photoelectron spectroscopy confirmed the zinc blend crystal structure and the stoichiometric composition of the particles. The refractive index was estimated as 2.25 (413 nm) -2.09 (709 nm) by fitting experimental absorption spectra to curves derived from Mie scattering calculations. This indicated an average porosity approximately 24%. Such colloids offer the potential to form diamond-like lattices with large, stable photonic band gaps.  相似文献   

11.
This review covers the concepts of photonic crystal (PhC) and its usage for the sensing of environmental pollutants. PhCs are composed of periodic and ordered nanostructures which can manipulate the diffraction or reflection of light propagation through the structures. If the light spectra locate in the visible range, the color of materials can be observed by naked eye. The optical properties of PhCs are determined by the lattice constant of the crystal or by the refractive index contrast between the colloids and the surrounding medium. Based on these features, responsive PhCs can be designed to detect the environmental pollutants. In this review, we primarily described the photonic crystals for the sensing of volatile organic compounds (VOCs), organophosphates (OPs), heavy metal ions and endocrine disrupting chemicals (EDCs), and these sensors exhibited excellent sensitivity and are promising for the on-site monitoring of pollutants.  相似文献   

12.
Proteases are overexpressed in most cancers and proteolytic activity has been shown to be a viable marker for cancer imaging in vivo. Herein, we describe the synthesis of luminescence-quenched shell cross-linked nanoparticles as photonic nanoprobes for protease sensing. Protease sensing scheme is based on a "turn-on" mechanism where the protease cleaves peptide cross-linkers of the fluorescence-quenched shell cross-linked NP (OFF state) leading to a highly emissive non-cross linked NP (ON state). The cross-linked particles can be strained by exposure to a good solvent and proteolysis allows for particle expansion (swelling) and a recovery of the luminescence.  相似文献   

13.
14.
Traffic cam: a tandem dye prepared from a FRET acceptor and a fluorogenic donor functions as a cell surface ratiometric pH indicator, which upon internalization serves to follow protein trafficking during endocytosis. This sensor was used to analyze agonist-dependent internalization of β(2)-adrenergic receptors. It was also used as a surrogate antigen to reveal direct surface-to-endosome antigen transfer between dendritic cells (not shown).  相似文献   

15.
Integrated studies using scanning tunneling microscopy and X-ray crystallography have established that 4,5,9,10-tetrahydropyrene-2,7-dicarboxylic acid and pyrene-2,7-dicarboxylic acid crystallize in 2D and 3D with striking homology. Different behavior is shown by related biphenyls that lack the planarizing conformational constraints of the pyrenyl core and the directing effects of intermolecular hydrogen bonding. The results of these studies show that molecules specifically designed to engage in multiple strong directional interadsorbate interactions are promising tools for imposing particular nanopatterns on surfaces and for revealing subtle aspects of crystallization.  相似文献   

16.
A water-soluble polythiophene-Au nanoparticle composite for pH sensing   总被引:1,自引:0,他引:1  
In this paper, we report the development of a reversible pH sensor in aqueous medium based on the fluorescence properties of a polythiophene-gold nanoparticle (Au NP) composite. The composite was synthesized in water by simultaneous reduction of HAuCl(4) to Au NPs and polymerization of thiophene in the presence of no additional reagents. It was stable for weeks and had characteristic emissions, which changed in the pH range of 3.0 to 6.0, thus providing a mean for probing the pH of an aqueous solution. Measurement of the pH could be performed over several cycles of titrations, pointing to the robustness of the materials for such sensing applications. The mass spectra of the composite at two extreme pH values were identical, indicating that the primary structure of the polymer was not affected due to changes in pH of the medium. Transmission electron microscopic (TEM) measurements indicated the presence of small sized Au NPs with the polymer in the milieu. The composite could be titrated by acid (or base) and considering the acid-base equilibria at different pHs, we have been able to calculate the pK(eq) of the composite, which was further used in calculating the pH of an aqueous solution from the emission spectrum of the composite. Our approach took advantage of redox chemistry in synthesizing the water-soluble composite and the optical behavior of a conjugated polymer in developing an important pH sensor, which may form the basis of further development of versatile pH or other sensors by suitably modifying the backbone of the monomer.  相似文献   

17.
Colloidal photonic crystals were fabricated using polystyrene particles (180 nm) and PMMA particles (450 nm), respectively, with a new and simple self-assembly method without special equipment. SEM images indicate that the prepared samples have ordered structures with few defects. The position of the stop-band scale nicely agrees with the particles' size. The sintering process of the PS photonic crystal film was studied with AFM heating system.  相似文献   

18.
We modeled the stimulated hydrogel volume transitions of a material which binds Pb2+ and is used as a photonic crystal chemical sensing material. This material consists of a polymerized crystalline colloidal array (PCCA) hydrogel which contains a crown ether molecular recognition group. The PCCA is a polyacrylamide hydrogel which embeds a crystalline colloidal array (CCA) of monodisperse polystyrene spheres of approximately 100 nm. The array spacing is set to diffract light in the visible spectral region. Changes in the hydrogel volume induced by Pb2+ binding alter the array spacing and shift the diffracted wavelength. This system allows us to sensitively follow the hydrogel swelling behavior which results from the immobilization of the Pb2+ by the crown ether chelating groups. Binding of the Pb2+ immobilizes its counterions. This results in a Donnan potential, which results in an osmotic pressure which swells the hydrogel. We continue here our development of a predictive model for hydrogel swelling based on Flory's theory of gel swelling. We are qualitatively able to model the PCCA swelling but cannot correctly model the large responsivity observed at the lowest Pb2+ concentrations which give rise to the experimentally observed low detection limits for Pb2+. These PCCA materials enable stimulated hydrogel volume transitions to be studied.  相似文献   

19.
pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5.5 to 9.0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode.
Figure
Single-nanoparticle laboratories: core-shell silica fluorescent nanoparticles for pH sensing  相似文献   

20.
Dual fluorescent labelling of cellulose nanocrystals for pH sensing   总被引:1,自引:0,他引:1  
Cellulose nanocrystals were converted into ratiometric pH-sensing nanoparticles by dual fluorescent labelling employing a facile one-pot procedure. A simple and versatile three-step procedure was also demonstrated extending the number of fluorophores available for grafting. In this method an amine group was introduced via esterification followed by a thiol-ene click reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号