首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isothermal adsorption and desorption of monolayer water on a Ag(110) surface in the temperature range of 130-137 K were characterized by monitoring second-harmonic (SH) generation from the silver surface. The SH intensity resonantly enhanced by the silver surface-state transition is highly sensitive to the amount of silver surface area covered by water and allows the observation of an abrupt change in the adsorption/desorption behavior at 133.5 K. At temperatures below 133.5 K water wets the Ag surface in a two-dimensional structure with a measured desorption energy of 25.0 (+/-3.3) kJ/mol. At temperatures greater than 133.5 K water desorbs from three-dimensional clusters with a measured desorption energy of 48.3 (+/-2.2) kJ/mol, in agreement with temperature-programmed desorption measurements. This wetting-dewetting transition of water adsorbed on the silver surface at 133.5 K is supported by classical nucleation theory calculations.  相似文献   

2.
A single‐layered intermolecular carbonization method was applied to synthesize single‐layered nitrogen‐doped graphene quantum dots (N‐GQDs) by using 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) as the only precursor. In this method, the gas produced in the pyrolysis of TATB assists with speeding up of the reactions and expanding the layered distance, so that it facilitates the formation of single‐layered N‐GQDs (about 80 %). The symmetric intermolecular carbonizations of TATB arrayed in a plane and six nitrogen‐containing groups ensure small, uniform sizes (2–5 nm) of the resulting products, and provide high nitrogen‐doping concentrations (N/C atomic ratio ca. 10.6 %). In addition to release of the produced gas, TATB is almost completely converted into aggregated N‐GQDs; thus, relatively higher production rates are possible with this approach. Investigations show that the as‐produced N‐GQDs have superior fluorescent characteristics; high water solubility, biocompatibility, and low toxicity; and are ready for potential applications, such as biomedical imaging and optoelectronic devices.  相似文献   

3.
The structures of formic and acetic acids deposited on a thin gold substrate held in vacuum at low temperatures and their related water-ice promoted chemistry have been investigated. The condensed water/guest films were taken to act as cirrus cloud "mimics." Such laboratory representations provide a necessary prelude to understanding how low temperature surfaces can affect chemical composition changes in the upper atmosphere. The systems were characterized by reflection-absorption infrared spectroscopy and temperature-programmed desorption spectrometry. The interaction behavior of the binary acid ices was compared to that observed when ternary mixtures of water, formic acid, and ammonia were deposited. Differences in the chemistry were observed depending on deposition method: layering or mixing. The more atmospherically relevant codeposition approach showed that at low temperatures, amorphous formic acid can be ionized to its monodentate form by water ice within the bulk rather than on the surface. In contrast, the introduction of ammonia leads to full bidentate ionization on the ice surface. The thermal desorption profiles of codeposited films of water, ammonia, and formic acid indicate that desorption occurs in three stages. The first is a slow release of ammonia between 120 and 160 K, then the main water desorption event occurs with a maximum rate close to 180 K, followed by a final release of ammonia and formic acid at about 230 K originating from nonhydrous ammonium formate on the surface. The behavior of acetic acid is similar to formic acid but shows lesser propensity to ionize in bulk water ice.  相似文献   

4.
Radiation-induced decomposition of PETN and TATB under extreme conditions   总被引:1,自引:0,他引:1  
We conducted a series of experiments investigating decomposition of secondary explosives PETN and TATB at varying static pressures and temperatures using synchrotron radiation. As seen in our earlier work, the decomposition rate of TATB at ambient temperature slows systematically with increasing pressure up to at least 26 GPa but varies little with pressure in PETN at ambient temperature up to 15.7 GPa, yielding important information pertaining to the activation complex volume in both cases. We also investigated the radiation-induced decomposition rate as a function of temperature at ambient pressure and 26 GPa for TATB up to 403 K, observing that the decomposition rate increases with increasing temperature as expected. The activation energy for the TATB reaction at ambient temperature was experimentally determined to be 16 +/- 3 kJ/mol.  相似文献   

5.
Dynamics of water absorption from a saturated vapor and water desorption into dry air for Nafion 1100 EW ionomers have been measured for film thicknesses between 51 and 606 microm and at temperatures ranging from 30 to 90 degrees C. Water absorption and desorption exhibit two distinct non-Fickian characteristics: (1) desorption is 10 times faster than absorption and (2) the normalized mass change does not collapse to a single master curve when plotted against time normalized by membrane thickness squared, t/l2, for either absorption or desorption. Water desorption data were fit well by a model in which diffusion is rapid and interfacial mass transport resistance is the rate-limiting process for water loss. Water absorption is described by a two-stage process. At early times, interfacial mass transport controls water absorption, and at longer times, water absorption is controlled by the dynamics of polymer swelling and relaxation.  相似文献   

6.
TATB固体与表面吸附水的相互作用研究   总被引:3,自引:0,他引:3  
姬广富  肖鹤鸣  董海山 《化学学报》2002,60(7):1209-1214
TATB(1,3,5-三氨基-2,4,6-三硝基苯)是最著名的耐热钝感炸药;水在 TATB表面的吸附作用研究具有理论和实用双重意义。在B3LYP/6-31G~(**)水平上 ,在对TATB晶体(001)表面作周期性计算的基础上经基组叠加误差(BSSE)校正 ,求得TATB的表面能为-19.90 kJ·mol~(-1),与实验值良好相符;首次求得水在 TATB(001)面的吸附能为-10.25kJ·mol~(-1);重点讨论了吸附前后能带和电子 结构的变化。  相似文献   

7.
1,3,5-三氨基-2,4,6-三硝基苯(TATB)具有优良的热安定性、非常钝感,在接近理论密度时对外界刺激表现出近乎木头的特点[1],是目前唯一通过美国能源部钝感炸药(insensitive highexplosive,IHE)标准的单质炸药。因TATB在核武器主炸药中的重要作用,对其性能的研究一直受到广泛关注,  相似文献   

8.
The growth of amorphous solid water (ASW) films on Pt(111) is investigated using rare gas (e.g., Kr) physisorption. Temperature programmed desorption of Kr is sensitive to the structure of thin water films and can be used to assess the growth modes of these films. At all temperatures that are experimentally accessible (20-155 K), the first layer of water wets Pt(111). Over a wide temperature range (20-120 K), ASW films wet the substrate and grow approximately layer by layer for at least the first three layers. In contrast to the ASW films, crystalline ice films do not wet the water monolayer on Pt(111). Virtually identical results were obtained for ASW films on epitaxial Pd(111) films grown on Pt(111). The desorption rates of thin ASW and crystalline ice films suggest that the relative free energies of the films are responsible for the different growth modes. However, at low temperatures, surface relaxation or "transient mobility" is primarily responsible for the relative smoothness of the films. A simple model of the surface relaxation semiquantitatively accounts for the observations.  相似文献   

9.
TATB与二氟甲烷以及与聚偏二氟乙烯的分子间相互作用   总被引:6,自引:2,他引:6  
动用密度泛函理论(SFT)B3LYP方法,取3-21G*基组,求得TATB(1,3,5-三氨基-2,4,6-三硝基苯)与CH~2F~2混合体系的三种优化构型以Boys-Bernardi方案校正基组叠加误差求得结合能。在B3LYP/6----311G*//B3LYP/3---21G*水TATB与CH~2F~2间的最大结合能为4.62kJ·mol^-1,还用MO-PM3方法计算TATB与---(CF~2CH~2}-(N=1,2,3,4,5,)的混合体系,由色散校正电子相关近似地求得其结合能力。当n=5时,求得TATB与-(CF~2CH~2)--~n的最大结合能约为52.97kJ·MOL^-1。此外,自然键轨道分析用于讨论TATB与CH~2F~2之间的电荷转移。  相似文献   

10.
Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption of water on highly oriented pyrolytic graphite (HOPG) at 90 K. RAIRS shows that water is physisorbed on HOPG at all coverages, as expected. Experiments at higher surface temperatures show marked changes in the O-H stretching region of the spectrum which can be assigned to the observation of the amorphous to crystalline ice phase transition. The infrared signature of both phases of solid water has been determined on HOPG and can be used to identify the phase of the ice. TPD spectra show the desorption of multilayers of crystalline ice. At high exposures a small bump appears in the TPD spectrum, on the low temperature side of the main peak, which is attributed to the amorphous to crystalline phase transition. At very low exposures of water, it is possible to distinguish the desorption of water from two- and three-dimensional islands and hence to determine the growth mode of water on the HOPG surface. Isothermal TPD studies have also been performed and show that the desorption of water does not obey perfect zero-order kinetics. Desorption orders, derived directly from the TPD spectra, confirm this observation. Desorption energies and preexponential factors have also been determined for this adsorption system.  相似文献   

11.
Nano-structured calcium silicate hydrate can physisorb or chemisorb iodine, making it interesting for medical or materials science applications, where a slow, controlled release of iodine is desired. It was found that iodine can be sorbed and released by applying the elemental halogen in solution, either as a gas or as a solid. At ambient temperatures the sorption and desorption process is quantitative and physical, meaning that the same amount of iodine is taken up and released. At temperatures above 32.5 °C (305.7 K) iodine reacts with the calcium silicate hydrate forming a complex, which is stable above the sublimation temperature of iodine. The formation energy for the iodine calcium silicate hydrate complex was established to be 41.8 ± 0.8 kJ mol−1 by calorimetry and the nature of the complex was investigated using X-ray photoelectron spectroscopy.  相似文献   

12.
The desorption of oxygen from polycrystalline palladium (Pd(poly)) was studied using temperature-programmed desorption (TPD) at 500–1300 K and the amounts of oxygen absorbed by palladium (n) from 0.05 to 50 monolayers. It was found that the desorption of O2 from Pd(poly), which occurred from a chemisorbed oxygen layer (Oads), in the release of oxygen from a near-surface metal layer in the course of the decomposition of PdO surface oxide, and in the release of oxygen from the bulk of palladium (Oabs), was governed by repulsive interactions between Oads atoms and the formation and decomposition of Oads-Pd*-Oabs structures (Pd* is a surface palladium atom). At θ ≤ 0.5, the repulsive interactions between Oads atoms (ɛaa = 10 kJ/mol) resulted in the desorption of O2 from Pd(poly) at 650–950 K. At 0.5 ≤ n ≤ 1.0, the release of inserted oxygen from a near-surface palladium layer occurred during TPD in the course of the migration of Oabs atoms to the surface and the formation-decomposition of Oads-Pd*-Oabs structures. As a result, the desorption of O2 occurred in accordance with a first-order reaction with a thermal desorption (TD) peak at T max ∼ 700 K. At 1.0 ≤ n ≤ 2.0, the decomposition of PdO surface oxide occurred at a constant surface cover-age with oxygen during TPD in the course of the formation-decomposition of Oads-Pd*-Oabs structures. Because of this, the desorption of O2 occurred in accordance with a zero-order reaction at low temperatures with a TD peak at T max ∼ 675 K. At 1.0 ≤ n ≤ 50, oxygen atoms diffused from deep palladium layers in the course of TPD and arrived at the surface at high temperatures. As a result, O2 was desorbed with a high-temperature TD peak at T > 750 K.  相似文献   

13.
The explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is of particular interest due to its extreme insensitivity to impact, shock and heat, while providing a good detonation velocity. To determine its fate under environmental conditions, TATB powder was irradiated with simulated sunlight and, in water, under UV light at 254 nm. The hydrolysis of particles submerged in neutral and alkaline solutions was also examined. We found that, by changing experimental conditions (e.g., light source, and mass and physical state of TATB), the intermediates and final products were slightly different. Mono-benzofurazan was the major transformation product in both irradiation systems. Two minor transformation products, the aci-nitro form of TATB and 3,5-diamino-2,4,6-trinitrophenol, were detected under solar light, while 1,3,5-triamino-2-nitroso-4,6-dinitrobenzene, 1,3,5-triamino-2,4-dinitrobenzene and mono-benzofuroxan were produced under UV light. The product identified as 3,5-diamino-2,4,6-trinitrophenol was identical to the one formed in the dark under alkaline conditions (pH 13) and in water incubated at either 50 °C or aged at ambient conditions. Interestingly, when only a few milligrams of TATB were irradiated with simulated sunlight, the aci-isomer and mono-benzofurazan derivative were detected; however, the hydrolysis product 3,5-diamino-2,4,6-trinitrophenol formed only much later in the absence of light. This suggests that the water released from TATB to form mono-benzofurazan was trapped in the interstitial space between the TATB layers and slowly hydrolyzed the relatively stable aci-nitro intermediate to 3,5-diamino-2,4,6-trinitrophenol. This environmentally relevant discovery provides data on the fate of TATB in surface environments exposed to sunlight, which can transform the insoluble substrate into more soluble and corrosive derivatives, such as 3,5-diamino-2,4,6-trinitrophenol, and that some hydrolytic transformation can continue even without light.  相似文献   

14.
Four new metal-organic frameworks (MOFs) containing chiral channels have been synthesized using an achiral, triazine-based trigonal-planar ligand, 4,4',4' '-s-triazine-2,4,6-triyltribenzoate (TATB), and an hourglass secondary building unit (SBU): Zn3(TATB)2(H2O)2.4DMF.6H2O (1); Cd3(TATB)2(H2O)2.7DMA.10H2O (2); [H2N(CH3)2][Zn3(TATB)2(HCOO)].HN(CH3)2.3DMF.3H2O (3); [H2N(CH3)2][Cd3(TATB)2(CH3COO)].HN(CH3)2.3DMA.4H2O (4). MOFs 1 and 2 are isostructural and possess (10,3)-a nets containing large chiral channels of 20.93 and 21.23 A, respectively, but are thermally unstable due to the easy removal of coordinated water molecules on the SBU. Replacement of these water molecules by formate or acetate generated in situ leads to 3 and 4, respectively. Formate or acetate links SBUs to form infinite helical chains bridged by TATB to create three-dimensional anionic networks, in which one of the two oxygen atoms of the formate or acetate is uncoordinated and points into the void of the channels. This novel SBU-stabilization and channel-functionalization strategy may have general implications in the preparation of new MOFs. Thermogravimetric analysis (TGA) shows that solvent-free 3' is thermally stable to 410 degrees C, while TGA studies on samples vapor-diffused with water, methanol, and chloroform show reversible adsorption. MOF 3 also has permanent porosity with a large Langmuir surface area of 1558 m2/g. All complexes exhibit similar strong luminescence with a lambdamax of approximately 423 nm upon excitation at 268.5 nm.  相似文献   

15.
Volatile aromatic and halogenated hydrocarbons are determined in water and soil samples by equilibrium headspace gas chromatography. Simultaneous analysis is carried out in a dual column/dual detector arrangement with ECD and PID. Their determination in contaminated soil is performed with the same instrumental configuration. However, in contrast to water analysis, an increased sample temperature was found necessary for highly adsorptive soil specimens. At sample temperatures of 95 °C, recoveries near 100% have been found. Both adsorption and desorption processes were found to be strongly time-dependent.  相似文献   

16.
Hydrogen is efficiently released during water dissociation on zirconium (Zr), while even very rapid temperature programmed heating of a hydrogen covered Zr surface predominantly leads to dissolution (approximately 99% dissolution). To help resolve these apparently contradictory observations, we have studied the dynamics of water (D2O) dissociation on a crystalline Zr surface by probing the rotational and vibrational energy distributions of the D2 produced using resonant enhanced multiphoton ionization spectroscopy. The internal-state energy distribution of the D2 product was found to be rotationally cold and vibrationally hot with respect to the temperature of the surface. The rotational distribution shows slight deviations from Boltzmann's law, with a mean rotational temperature of 426 K while the surface is at 800 K. The population of the nu"=1 vibration is at least four times higher than a 800 K temperature would allow, this corresponding to a vibrational temperature of 1100 K. Information on the translational energy of the D2 product have also been obtained by time-of-flight spectroscopy and it is found to be nearly thermally equilibrated with the surface temperature. Similar results were obtained from studies of D2 scattered from a clean Zr surface, and of D2 released by a slow thermal desorption process which involves dissolved hydrogen as the source. The reconciliation of the present results with those for thermal desorption of preadsorbed hydrogen implies a role for both surface and subsurface adsorption sites on the Zr surface and clearly demonstrates that at high temperatures, the release of D2 arises from the recombinative desorption of adsorbed hydrogen formed by the complete dissociation of D2O.  相似文献   

17.
The surface chemistry of vinyltrimethylsilane (VTMS) on Si(100)-2x1 has been investigated using multiple internal reflection-Fourier transform infrared spectroscopy, Auger electron spectroscopy, and thermal desorption mass spectrometry. Molecular adsorption of VTMS at submonolayer coverages is dominating at cryogenic temperatures (100 K). Upon adsorption at room temperature, chemical reaction involving rehybridization of the double bond in VTMS occurs. Further annealing induces several reactions: molecular desorption from a monolayer by 400 K, formation and desorption of propylene by 500 K, decomposition leading to the release of silicon-containing products around 800 K, and, finally, surface decomposition leading to the production of silicon carbide and the release of hydrogen as H(2) at 800 K. This chemistry is markedly different from the previously reported behavior of VTMS on Si(111)-7x7 surfaces resulting in 100% conversion to silicon carbide. Thus, some information about the surface intermediates of the VTMS reaction with silicon surfaces can be deduced.  相似文献   

18.
We present measurements of water uptake and release by single micrometre-sized aqueous sucrose particles. The experiments were performed in an electrodynamic balance where the particles can be stored contact-free in a temperature and humidity controlled chamber for several days. Aqueous sucrose particles react to a change in ambient humidity by absorbing/desorbing water from the gas phase. This water absorption (desorption) results in an increasing (decreasing) droplet size and a decreasing (increasing) solute concentration. Optical techniques were employed to follow minute changes of the droplet's size, with a sensitivity of 0.2 nm, as a result of changes in temperature or humidity. We exposed several particles either to humidity cycles (between ~2% and 90%) at 291 K or to constant relative humidity and temperature conditions over long periods of time (up to several days) at temperatures ranging from 203 to 291 K. In doing so, a retarded water uptake and release at low relative humidities and/or low temperatures was observed. Under the conditions studied here, the kinetics of this water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules. Hence, it is possible to derive the translational diffusion coefficient of water molecules, D(H(2)O,) from these data by simulating the growth or shrinkage of a particle with a liquid-phase diffusion model. Values for D(H(2)O)-values as low as 10(-24) m(2) s(-1) are determined using data at temperatures down to 203 K deep in the glassy state. From the experiment and modelling we can infer strong concentration gradients within a single particle including a glassy skin in the outer shells of the particle. Such glassy skins practically isolate the liquid core of a particle from the surrounding gas phase, resulting in extremely long equilibration times for such particles, caused by the strongly non-linear relationship between concentration and D(H(2)O). We present a new parameterization of D(H(2)O) that facilitates describing the stability of aqueous food and pharmaceutical formulations in the glassy state, the processing of amorphous aerosol particles in spray-drying technology, and the suppression of heterogeneous chemical reactions in glassy atmospheric aerosol particles.  相似文献   

19.
We investigated the water (D(2)O) adsorption at 135?K on a hydrogen pre-adsorbed Rh(111) surface using temperature programmed desorption and infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum. With increasing the hydrogen coverage, the desorption temperature of water decreases. At the saturation coverage of hydrogen, dewetting growth of water ice was observed: large three-dimensional ice grains are formed. The activation energy of water desorption from the hydrogen-saturated Rh(111) surface is estimated to be 51 kJ/mol. The initial sticking probability of water decreases from 0.46 on the clean surface to 0.35 on the hydrogen-saturated surface. In IRAS measurements, D-down species were not observed on the hydrogen saturated surface. The present experimental results clearly show that a hydrophilic Rh(111) clean surface changes into a hydrophobic surface as a result of hydrogen adsorption.  相似文献   

20.
Water desorption from NaMgA zeolites was investigated as a function of magnesium ion content with the help of thermal analytical methods such as combined TG-DTG-DTA, TMA and X-ray heating technique. At least five partly overlapping desorption effects of water were observed from DTA and DTG features. The amount of water corresponding to individual desorption peaks was determined by experimental methods of separation. An assignment of the desorption effects to the related adsorbed forms of water is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号